

Praise for Head First HTML and CSS

“Head First HTML and CSS is a thoroughly modern introduction to forward-looking practices in
web page markup and presentation. It correctly anticipates readers’ puzzlements and handles
them just in time. The highly graphic and incremental approach precisely mimics the best way
to learn this stuff: make a small change and see it in the browser to understand what each new
item means.”

 — Danny Goodman, author of Dynamic HTML: The Definitive Guide

“Eric Freeman and Elisabeth Robson clearly know their stuff. As the Internet becomes more com-
plex, inspired construction of web pages becomes increasingly critical. Elegant design is at the core
of every chapter here, each concept conveyed with equal doses of pragmatism and wit.”

 — Ken Goldstein, Executive Vice President and
 Managing Director, Disney Online

“The Web would be a much better place if every HTML author started off by reading this
book.”

 — L. David Baron, Technical Lead, Layout and CSS, Mozilla Corporation
 http://dbaron.org/

“I’ve been writing HTML and CSS for 10 years now, and what used to be a long trial-and-
error learning process has now been reduced neatly into an engaging paperback. HTML used
to be something you could just hack away at until things looked okay on screen, but with the
advent of web standards and the movement toward accessibility, sloppy coding practice is not
acceptable anymore…from a business standpoint or a social responsibility standpoint. Head
First HTML and CSS teaches you how to do things right from the beginning without making the
whole process seem overwhelming. HTML, when properly explained, is no more complicated
than plain English, and the authors do an excellent job of keeping every concept at eye level.”

 — Mike Davidson, President and CEO, Newsvine, Inc.

“The information covered in this book is the same material the pros know, but taught in an
educational and humorous manner that doesn’t ever make you think the material is impossible
to learn or you are out of your element.”

 — Christopher Schmitt, author of The CSS Cookbook
 and Professional CSS, schmitt@christopher.org

“Oh, great. You made an HTML book simple enough a CEO can understand it. What will you
do next? Accounting simple enough my developer can understand it? Next thing you know, we’ll
be collaborating as a team or something.”

 — Janice Fraser, CEO, Adaptive Path

More Praise for Head First HTML and CSS

“I *heart* Head First HTML and CSS—it teaches you everything you need to learn in a ‘fun
coated’ format!”
 — Sally Applin, UI designer and fine artist, http://sally.com

“This book has humor and charm, but most importantly, it has heart. I know that sounds
ridiculous to say about a technical book, but I really sense that at its core, this book (or at least
its authors) really care that the reader learns the material. This comes across in the style, the
language, and the techniques. Learning—real understanding and comprehension—on the part
of the reader is clearly topmost in the minds of the authors. And thank you, thank you, thank
you, for the book’s strong and sensible advocacy of standards compliance. It’s great to see an
entry-level book, that I think will be widely read and studied, campaign so eloquently and
persuasively on behalf of the value of standards compliance in web page code. I even found
in here a few great arguments I had not thought of—ones I can remember and use when I am
asked (as I still am)—‘what’s the deal with compliance and why should we care?’ I’ll have more
ammo now! I also liked that the book sprinkles in some basics about the mechanics of actually
getting a web page live—FTP, web server basics, file structures, etc.”

 — Robert Neer, Director of Product Development, Movies.com

“Head First HTML and CSS is a most entertaining book for learning how to build a great web
page. It not only covers everything you need to know about HTML and CSS, it also excels in
explaining everything in layman’s terms with a lot of great examples. I found the book truly
enjoyable to read, and I learned something new!”

 — Newton Lee, Editor-in-Chief, ACM Computers in Entertainment
 http://www.acmcie.org

“My wife stole the book. She’s never done any web design, so she needed a book like Head First
HTML and CSS to take her from beginning to end. She now has a list of websites she wants to
build—for our son’s class, our family…If I’m lucky, I’ll get the book back when she’s done.”

 — David Kaminsky, Master Inventor, IBM

“Beware. If you’re someone who reads at night before falling asleep, you’ll have to restrict Head
First HTML and CSS to daytime reading. This book wakes up your brain.”

 — Pauline McNamara, Center for New Technologies and Education,
 Fribourg University, Switzerland

Praise for other books by Eric Freeman and Elisabeth Robson

“From the awesome Head First Java folks, this book uses every conceivable trick to help you
understand and remember. Not just loads of pictures: pictures of humans, which tend to interest
other humans. Surprises everywhere. Stories, because humans love narrative. (Stories about things
like pizza and chocolate. Need we say more?) Plus, it’s darned funny.”

 — Bill Camarda, READ ONLY

“This book’s admirable clarity, humor, and substantial doses of clever make it the sort of book that
helps even nonprogrammers think well about problem solving.”

 — Cory Doctorow, co-editor of Boing Boing
 and author of Down and Out in the Magic Kingdom
 and Someone Comes to Town, Someone Leaves Town

“I feel like a thousand pounds of books have just been lifted off of my head.”

 — Ward Cunningham, inventor of the wiki
 and founder of the Hillside Group

“This book is close to perfect, because of the way it combines expertise and readability. It speaks with
authority and it reads beautifully. It’s one of the very few software books I’ve ever read that strikes
me as indispensable. (I’d put maybe 10 books in this category, at the outside.)”

 — David Gelernter, professor of computer science,
 Yale University, and author of Mirror Worlds and Machine Beauty

“A nosedive into the realm of patterns, a land where complex things become simple, but where
simple things can also become complex. I can think of no better tour guides than these authors.”

 — Miko Matsumura, industry analyst, The Middleware Company
 former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”

 — Daniel Steinberg, Editor-in-Chief, java.net

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of
tired, stale professor-speak.”

 — Travis Kalanick, founder of Scour and Red Swoosh,
 member of the MIT TR100

“I literally love this book. In fact, I kissed this book in front of my wife.”

 — Satish Kumar

Make it Stick

Other related books from O’Reilly

HTML5: Up and Running

HTML5 Canvas

HTML5: The Missing Manual

HTML5 Geolocation

HTML5 Graphics with SVG and CSS3

HTML5 Forms

HTML5 Media

Other books in O’Reilly’s Head First series

Head First C#

Head First Java

Head First Object-Oriented Analysis & Design (OOA&D)

Head First Servlets and JSP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Rails

Head First PHP & MySQL

Head First Web Design

Head First Networking

Head First iPhone and iPad Development

Head First jQuery

Other O’Reilly books by Eric Freeman and Elisabeth Robson

Head First Design Patterns

Head First HTML with CSS & XHTML (first edition)

Head First HTML5 Programming

Beijing • Cambridge • Farnham • K�ln • Sebastopol • Tokyo

Elisabeth Robson
Eric Freeman

Head First
HTML and CSS

Wouldn’t it be dreamy if there
were an HTML book that didn’t

assume you knew what elements,
attributes, validation, selectors, and

pseudo-classes were, all by page
three? It’s probably just a

fantasy…

Head First HTML and CSS
by Elisabeth Robson and Eric Freeman

Copyright © 2012 Elisabeth Robson and Eric Freeman. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Brett McLaughlin (first edition), Mike Hendrickson (second edition)

Cover Designer: Karen Montgomery

HTML Wranglers: Elisabeth Robson, Eric Freeman

Production Editor: Kristen Borg

Indexer: Ron Strauss

Proofreader: Rachel Monaghan

Page Viewer: Oliver

Printing History:
December 2005: First Edition.

September 2012: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. The Head First series designations, Head First HTML and CSS, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First HTML and CSS to, say, run a nuclear power plant, you’re on your
own. We do, however, encourage you to visit the Head First Lounge.

No elements or properties were harmed in the making of this book.

Thanks to Clemens Orth for the use of his photo, “applestore.jpg”, which appears in Chapter 5.

ISBN: 978-0-596-15990-0
[TI]

To the W3C, for saving us from the browser wars and
for their brilliance in separating structure (HTML) from
presentation (CSS)…

And for making HTML and CSS complex enough that
people need a book to learn it.

Browser wars? You’ll
find out in Chapter 6.

viii

the authors

Authors of Head First HTML and CSS

Elisabeth is a software engineer, writer, and trainer.
She has been passionate about technology since her
days as a student at Yale University, where she earned a
master’s of science in computer science and designed a
concurrent, visual programming language and software
architecture.

Elisabeth’s been involved with the Internet since the
early days; she co-created the award-winning website,
the Ada Project, one of the first websites designed
to help women in computer science find career and
mentorship information online.

She’s currently co-founder of WickedlySmart, an online
education experience centered on web technologies,
where she creates books, articles, videos and more.
Previously, as Director of Special Projects at O’Reilly
Media, Elisabeth produced in-person workshops and
online courses on a variety of technical topics and
developed her passion for creating learning experiences
to help people understand technology. Prior to her work
with O’Reilly, Elisabeth spent time spreading fairy dust
at the Walt Disney Company, where she led research
and development efforts in digital media.

When not in front of her computer, you’ll find Elisabeth
hiking, cycling or kayaking in the great outdoors, with
her camera nearby, or cooking vegetarian meals.

You can send her email at beth@wickedlysmart.com
or visit her blog at http://elisabethrobson.com.

Eric Freeman

Eric is described by Head First series co-creator Kathy
Sierra as “one of those rare individuals fluent in the language,
practice, and culture of multiple domains from hipster
hacker, corporate VP, engineer, think tank.”

Professionally, Eric recently ended nearly a decade as a media
company executive—having held the position of CTO of
Disney Online and Disney.com at the Walt Disney Company.
Eric is now devoting his time to WickedlySmart, a startup he
co-created with Elisabeth.

By training, Eric is a computer scientist, having studied with
industry luminary David Gelernter during his Ph.D. work
at Yale University. His dissertation is credited as the seminal
work in alternatives to the desktop metaphor, and also as the
first implementation of activity streams, a concept he and Dr.
Gelernter developed.

In his spare time, Eric is deeply involved with music; you’ll
find Eric’s latest project, a collaboration with ambient music
pioneer Steve Roach, available on the iPhone App Store
under the name Immersion Station.

Eric lives with his wife and young daughter on Bainbridge
Island. His daughter is a frequent vistor to Eric’s studio, where
she loves to turn the knobs of his synths and audio effects.

Write to Eric at eric@wickedlysmart.com or visit his site
at http://ericfreeman.com.

Elisabeth Robson

ix

Intro
Your brain on HTML and CSS. Here you are trying to learn something, while

here your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to avoid

and whether naked snowboarding is a bad idea.” So how do you trick your brain into

thinking that your life depends on knowing HTML and CSS?

Table of Contents (summary)
 Intro xxv

1 The Language of the Web: getting to know html 1

2 Meet the “HT” in HTML: going further, with hypertext 43

3 Web Page Construction: building blocks 77

4 A Trip to Webville: getting connected 123

5 Meeting the Media: adding images to your pages 163

6 Serious HTML: standards and all that jazz 219

7 Adding a Little Style: getting started with CSS 255

8 Expanding your Vocabulary: styling with fonts and colors 311

9 Getting Intimate with Elements: the box model 361

10 Advanced Web Construction: divs and spans 413

11 Arranging Elements: layout and positioning 471

12 Modern HTML: html5 markup 545

13 Getting Tabular: tables and more lists 601

14 Getting Interactive: html forms 645

Appendix: The Top Ten Topics (We Didn’t Cover): leftovers 697

Table of Contents (the real thing)

table of contents

Who is this book for ? xxvi

Metacognition xxix

Here’s what WE did xxx

Bend your brain into submission xxxi

Tech reviewers (first edition) xxxiv

Acknowledgments (first edition) xxxv

Tech reviewers (second edition) xxxvi

Acknowledgments (second edition) xxxvi

x

1 The Language of the Web

getting to know html

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite:
nice downbeat tune.
 </p>
 <p>
 ...

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite:
nice downbeat tune.
 </p>
 <p>
 ...

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite:
nice downbeat tune.
 </p>
 <p>
 ...

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite: nice down-
beat tune.
 </p>
 <p>
 ...

“I

 ne
ed t

he HTML f le ‘lounge.html’”

“Found it, here ya go”

Web Server

No pressure, but
thousands of people are going

to visit this web page when you’re
finished. It not only needs to be

correct, it’s gotta look great,
too!

The only thing that is standing between you and getting
yourself on the Web is learning to speak the lingo:

HyperText Markup Language, or HTML for short. So, get ready for some language

lessons. After this chapter, not only are you going to understand some basic

elements of HTML, but you’ll also be able to speak HTML with a little style. Heck,

by the end of this book, you’ll be talking HTML like you grew up in Webville.

The web killed the radio star 2

What does the web server do? 3

What you write (the HTML) 4

What the browser creates 5

Your big break at Starbuzz Coffee 9

Creating the Starbuzz web page 11

Creating an HTML file (Mac) 12

Creating an HTML file (Windows) 14

Meanwhile, back at Starbuzz Coffee… 17

Saving your work 18

Opening your web page in a browser 19

Take your page for a test drive 20

Are we there yet? 23

Another test drive 24

Tags dissected 25

Meet the style element 29

Giving Starbuzz some style… 30

Cruisin’ with style… 31

Exercise Solutions 38

table of contents

xi

2 Meeting the “HT” in HTML

going further with hypertext

Did someone say “hypertext?” What’s that? Oh, only the entire

basis of the Web. In Chapter 1 we kicked the tires of HTML and found it to be a nice

markup language (the “ML” in HTML) for describing the structure of web pages. Now

we’re going to check out the “HT” in HTML, hypertext, which will let us break free of

a single page and link to other pages. Along the way we’re going to meet a powerful

new element, the <a> element, and learn how being “relative” is a groovy thing. So,

fasten your seat belts—you’re about to learn some hypertext.

Head First Lounge, new and improved 44

Creating the new lounge 46

What did we do? 48

Understanding attributes 51

Getting organized 56

Organizing the lounge… 57

Technical difficulties 58

Planning your paths… 60

Fixing those broken images… 66

Exercise Solutions 73

table of contents

xii

3 Web Page Construction

building blocks

h2

img

img

p

h2

h2

h1

p

p

p

I was told I’d actually be creating web pages in this book?
You’ve certainly learned a lot already: tags, elements, links, paths…but it’s all for

nothing if you don’t create some killer web pages with that knowledge. In this chapter

we’re going to ramp up construction: you’re going to take a web page from conception

to blueprint, pour the foundation, build it, and even put on some finishing touches. All

you need is your hard hat and your toolbelt, as we’ll be adding some new tools and

giving you some insider knowledge that would make Tim “The Toolman” Taylor proud.

From journal to website, at 12 mph 79

The rough design sketch 80

From a sketch to an outline 81

From the outline to a web page 82

Test-driving Tony’s web page 84

Adding some new elements 85

Meet the <q> element 86

Looooong quotes 90

Adding a blockquote 91

The real truth behind the <q> and <blockquote> mystery 94

Meanwhile, back at Tony’s site… 100

Of course, you could use the <p> element to make a list… 101

Constructing HTML lists in two easy steps 102

Taking a test drive through the cities 104

Putting one element inside another is called “nesting” 107

To understand the nesting relationships, draw a picture 108

Using nesting to make sure your tags match 109

Exercise Solutions 117

table of contents

xiii

4 A Trip to Webville

getting connected

Web pages are a dish best served on the Internet. So far

you’ve only created HTML pages that live on your own computer. You’ve also

only linked to pages that are on your own computer. We’re about to change all

that. In this chapter we’ll encourage you to get those web pages on the Internet

where all your friends, fans, and customers can actually see them. We’ll also

reveal the mysteries of linking to other pages by cracking the code of the h, t, t, p,

:, /, /, w, w, w. So, gather your belongings; our next stop is Webville.

Getting Starbuzz (or yourself) onto the Web 124

Finding a hosting company 125

How can you get a domain name? 126

Moving in 128

Getting your files to the root folder 129

As much FTP as you can possibly fit in two pages 130

Back to business… 133

Mainstreet, USA 134

What is HTTP? 135

What’s an absolute path? 136

How default pages work 139

Earl needs a little help with his URLs 140

How do we link to other websites? 142

Linking to Caffeine Buzz 143

And now for the test drive… 144

Web page fit and finish 147

The title test drive… 148

Linking into a page 149

Using the id attribute to create a destination for <a> 150

How to link to elements with ids 151

Linking to a new window 155

Opening a new window using target 156

Exercise Solutions 160

table of contents

xiv

5 Meeting the Media

adding images to your pages

Here’s one pixel.Here’s a lot
of pixels that
together make up
the upper part of
the right wing of
the butterfly.

This image is made up
of thousands of pixels
when it’s displayed on
a computer screen.

Smile and say “cheese.” Actually, smile and say “gif,”
“jpg,” or “png”—these are going to be your choices when “developing

pictures” for the Web. In this chapter you’re going to learn all about adding your

first media type to your pages: images. Got some digital photos you need to get

online? No problem. Got a logo you need to get on your page? Got it covered.

But before we get into all that, don’t you still need to be formally introduced to

the element? So sorry, we weren’t being rude; we just never saw the “right

opening.” To make up for it, here’s an entire chapter devoted to . By the end

of the chapter you’re going to know all the ins and outs of how to use the

element and its attributes. You’re also going to see exactly how this little element

causes the browser to do extra work to retrieve and display your images.

How the browser works with images 164

How images work 167

: it’s not just relative links anymore 171

Always provide an alternative 173

Sizing up your images 174

Creating the ultimate fan site: myPod 175

Whoa! The image is way too large 178

Open the image 182

Resizing the image 183

Fixing up the myPod HTML 188

More photos for myPod 190

Turning the thumbnails into links 196

Create individual pages for the photos 197

So, how do I make links out of images? 198

What format should we use? 203

To be transparent, or not to be transparent? That is the question… 204

Wait, what is the color of the web page background? 206

Check out the logo with a matte 207

Add the logo to the myPod web page 208

Exercise Solutions 213

table of contents

xv

6 Serious HTML

standards and all that jazz

What else is there to know about HTML? You’re well on your way to

mastering HTML. In fact, isn’t it about time we move on to CSS and learn how to make

all this bland markup look fabulous? Before we do, we need to make sure your HTML

is really ready for the big leagues. Don’t get us wrong, you’ve been writing first-class

HTML all along, but there are just a few extra things you need to do to make it “industry

standard” HTML. It’s also time you think about making sure you’re using the latest and

greatest HTML standard, otherwise known as HTML5. By doing so, you’ll ensure that

your pages play well with the latest i-Device, and that they’ll display more uniformly

across all browsers (at least the ones you’d care about). You’ll also have pages that

load faster, pages that are guaranteed to play well with CSS, and pages that are ready

to move into the future as the standards grow. Get ready, this is the chapter where you

move from web tinkerer to web professional.

A Brief History of HTML 222

The new, and improved, HTML5 doctype 227

HTML, the new “living standard” 228

Adding the document type definition 229

The doctype test drive 230

Meet the W3C validator 233

Validating the Head First Lounge 234

Houston, we have a problem… 235

Fixing that error 236

We’re almost there… 237

Adding a <meta> tag to specify the character encoding 239

Making the validator (and more than a few browsers) happy
with a <meta> tag… 240

Third time’s the charm? 241

Calling all HTML professionals, grab the handbook… 244

Exercise Solutions 251

table of contents

xvi

7 Adding a Little Style

getting started with CSS

I was told there’d be CSS in this book. So far you’ve been

concentrating on learning HTML to create the structure of your web pages. But as

you can see, the browser’s idea of style leaves a lot to be desired. Sure, we could

call the fashion police, but we don’t need to. With CSS, you’re going to completely

control the presentation of your pages, often without even changing your HTML.

Could it really be so easy? Well, you are going to have to learn a new language;

after all, Webville is a bilingual town. After reading this chapter’s guide to learning

the language of CSS, you’re going to be able to stand on either side of Main Street

and hold a conversation.

Five-Minute
Mystery

You’re not in Kansas anymore 256

Overheard on Webville’s “Trading Spaces” 258

Using CSS with HTML 259

Getting CSS into your HTML 261

Adding style to the lounge 262

Let’s put a line under the welcome message too 265

So, how do selectors really work? 267

Seeing selectors visually 270

Getting the Lounge style into the elixirs and directions pages 273

It’s time to talk about your inheritance… 281

Overriding inheritance 284

Adding an element to the greentea class 287

Creating a class selector 288

Taking classes further… 290

The world’s smallest and fastest guide to how styles are applied 292

Exercise Solutions 303

table of contents

body

html

title

head

stylemeta h1 p h2 pp

img a em a

xvii

8 Expanding Your Vocabulary

styling with fonts and colors

Your CSS language lessons are coming along nicely. You

already have the basics of CSS down, and you know how to create CSS rules to

select and specify the style of an element. Now it’s time to build your vocabulary,

and that means picking up some new properties and learning what they can do

for you. In this chapter we’re going to work through some of the most common

properties that affect the display of text. To do that, you’ll need to learn a few

things about fonts and color. You’re going to see you don’t have to be stuck with

the fonts everyone else uses, or the clunky sizes and styles the browser uses as

the defaults for paragraphs and headings. You’re also going to see there is a lot

more to color than meets the eye.

1

2
3

4
5 6

7 8

9

A
B

C
D

E

10 11

F

12
13

14
150

Text and fonts from 30,000 feet 312

What is a font family anyway? 314

Specifying font families using CSS 317

Dusting off Tony’s journal 318

How do I deal with everyone having different fonts? 321

How Web Fonts work 323

How to add a Web Font to your page… 325

Adjusting font sizes 328

So, how should I specify my font sizes? 330

Let’s make these changes to the font sizes in Tony’s web page 332

Changing a font’s weight 335

Adding style to your fonts 337

Styling Tony’s quotes with a little italic 338

How do web colors work? 340

How do I specify web colors? Let me count the ways… 343

The two-minute guide to hex codes 346

How to find web colors 348

Back to Tony’s page… 351

Everything you ever wanted to know about text-decorations 353

Removing the underline… 354

Exercise Solutions 357

table of contents

xviii

9 Getting Intimate with Elements

the box model

To do advanced web construction, you really need to know
your building materials. In this chapter we’re going to take a close look

at our building materials: the HTML elements. We’re going to put block and inline

elements right under the microscope and see what they’re made of. You’ll see how

you can control just about every aspect of how an element is constructed with CSS.

But we don’t stop there—you’ll also see how you can give elements unique identities.

And, if that weren’t enough, you’re going to learn when and why you might want to

use multiple stylesheets. So, turn the page and start getting intimate with elements.

The lounge gets an upgrade 362

Starting with a few simple upgrades 364

Checking out the new line height 366

Getting ready for some major renovations 367

A closer look at the box model 368

What you can do to boxes 370

Creating the guarantee style 375

A test drive of the paragraph border 376

Padding, border, and margins for the guarantee 377

Adding a background image 380

Fixing the background image 383

How do you add padding only on the left? 384

How do you increase the margin just on the right? 385

A two-minute guide to borders 386

Border fit and finish 389

Using an id in the lounge 396

Using multiple stylesheets 399

Stylesheets—they’re not just for desktop browsers
anymore… 400

Add media queries right into your CSS 401

Exercise Solutions 407

table of contents

xix

10 Advanced Web Construction

divs and spans

It’s time to get ready for heavy construction. In this chapter

we’re going to roll out two new HTML elements: <div> and . These are no

simple “two by fours”; these are full-blown steel beams. With <div> and ,

you’re going to build some serious supporting structures, and once you’ve got those

structures in place, you’re going to be able to style them all in new and powerful

ways. Now, we couldn’t help but notice that your CSS toolbelt is really starting to

fill up, so it’s time to show you a few shortcuts that will make specifying all these

properties a lot easier. And we’ve also got some special guests in this chapter,

the pseudo-classes, which are going to allow you to create some very interesting

selectors. (If you’re thinking that “pseudo-classes” would make a great name for your

next band, too late; we beat you to it.)Weekly Elixir
Specials

Lemon Breeze

Chai Chiller

Black Brain Brew

The ultimate healthy drink,

this elixir combines herbal

botanicals, minerals, and

vitamins with a twist of

lemon into a smooth citrus

wonder that will keep your

immune system going all

day and all night.

Not your traditional chai,

this elixir mixes maté with

chai spices and adds

 an extra chocolate kick

for a caffeinated taste

sensation on ice.

Want to boost your

memory? Try our Black

Brain Brew elixir, made

with black oolong tea and

just a touch of espresso.

Your brain will thank you

for the boost.

Join us any evening for these and all

our wonderful elixirs.

A close look at the elixirs HTML 415

Let’s explore how we can divide a page into logical sections 417

Adding a border 424

Adding some real style to the elixirs section 425

Working on the elixir width 426

Adding the basic styles to the elixirs 431

What we need is a way to select descendants 437

Changing the color of the elixir headings 439

Fixing the line height 440

It’s time to take a little shortcut 442

Adding s in three easy steps 448

The <a> element and its multiple personalities 452

How can you style elements based on their state? 453

Putting those pseudo-classes to work 455

Isn’t it about time we talk about the “cascade”? 457

The cascade 459

Welcome to the “What’s my specificity?” game 460

Putting it all together 461

Exercise Solutions 467

table of contents

xx

11 Arranging Elements

layout and positioning

It’s time to teach your HTML elements new tricks. We’re not

going to let those HTML elements just sit there anymore—it’s about time they get

up and help us create some pages with real layouts. How? Well, you’ve got a good

feel for the <div> and structural elements and you know all about how the

box model works, right? So, now it’s time to use all that knowledge to craft some real

designs. No, we’re not just talking about more background and font colors—we’re

talking about full-blown professional designs using multicolumn layouts. This is the

chapter where everything you’ve learned comes together.

Did you do the Super Brain Power? 472

Use the Flow, Luke 473

What about inline elements? 475

How it all works together 476

How to float an element 479

The new Starbuzz 483

Move the sidebar just below the header 488

Fixing the two-column problem 491

Setting the margin on the main section 492

Solving the overlap problem 495

Righty tighty, lefty loosey 498

Liquid and frozen designs 501

How absolute positioning works 504

Changing the Starbuzz CSS 507

How CSS table display works 511

Adding HTML structure for the table display 513

What’s the problem with the spacing? 517

Problems with the header 524

Fixing the header images with float 525

Positioning the award 528

How does fixed positioning work? 531

Using a negative left property value 533

Exercise Solutions 539

p

h2

p

p
img img img img

em span
emspan

p id=“amazing”

text

text
text
text

h2

h1 text

text

text

text
text text

text

table of contents

xxi

12 Modern HTML

html5 markup

So, we’re sure you’ve heard the hype around HTML5. And,

given how far along you are in this book, you’re probably wondering if you made the

right purchase. Now, one thing to be clear about, up front, is that everything you’ve

learned in this book has been HTML, and more specifically has met the HTML5

standard. But there are some new aspects of HTML markup that were added with

the HTML5 standard that we haven’t covered yet, and that’s what we’re going to do

in this chapter. Most of these additions are evolutionary, and you’re going to find you

are quite comfortable with them given all the hard work you’ve already done in this

book. There’s some revolutionary stuff too (like video), and we’ll talk about that in this

chapter as well. So, let’s dive in and take a look at these new additions!

Rethinking HTML structure 546

Update your Starbuzz HTML 551

How to update your CSS for the new elements 554

Setting up the CSS for the blog page 563

We still need to add a date to the blog… 565

Adding the <time> element to your blog 566

How to add more <header> elements 568

So, what’s wrong with the header anyway? 570

A final test drive for the headers 571

Completing the navigation 574

Who needs GPS? Giving the navigation a test drive 575

Ta-da! Look at that navigation! 577

Creating the new blog entry 580

Lights, camera, action… 581

How does the <video> element work? 583

Closely inspecting the video attributes… 584

What you need to know about video formats 586

The video format contenders 587

How to juggle all those formats… 589

How to be even more specific with your video formats 590

Exercise Solutions 597

table of contents

xxii

13 Getting Tabular

tables and more lists

If it walks like a table and talks like a table… There comes a time

in life when we have to deal with the dreaded tabular data. Whether you need to

create a page representing your company’s inventory over the last year or a catalog

of your vinylmation collection (don’t worry, we won’t tell), you know you need to do

it in HTML, but how? Well, have we got a deal for you: order now, and in a single

chapter we’ll reveal the secrets that will allow you to put your very own data right

inside HTML tables. But there’s more: with every order we’ll throw in our exclusive

guide to styling HTML tables. And, if you act now, as a special bonus, we’ll throw in

our guide to styling HTML lists. Don’t hesitate; call now!

How do you make tables with HTML? 603

Creating a table with HTML 604

What the browser creates 605

Tables dissected 606

Adding a caption 609

Before we start styling, let’s get the table into Tony’s page 611

Getting those borders to collapse 616

How about some color? 618

Tony made an interesting discovery 620

Another look at Tony’s table 621

How to tell cells to span more than one row 622

Test drive the table 624

Trouble in paradise? 625

Overriding the CSS for the nested table headings 629

Giving Tony’s site the final polish 630

What if you want a custom marker? 632

Exercise Solutions 636

table of contents

xxiii

14 Getting Interactive
html forms

So far all your web communication has been one-way:
from your page to your visitors. Golly, wouldn’t it be nice if your visitors

could talk back? That’s where HTML forms come in: once you enable your pages

with forms (along with a little help from a web server), your pages are going to be

able to gather customer feedback, take an online order, get the next move in an

online game, or collect the votes in a “hot or not” contest. In this chapter you’re going

to meet a whole team of HTML elements that work together to create web forms.

You’ll also learn a bit about what goes on behind the scenes in the server to support

forms, and we’ll even talk about keeping those forms stylish.

How forms work 646

What you write in HTML 648

What the browser creates 649

How the <form> element works 650

Getting ready to build the Bean Machine form 660

Adding the <form> element 661

How form element names work 662

Back to getting those <input> elements into your HTML 664

Adding some more input elements to your form 665

Adding the <select> element 666

Give the customer a choice of whole or ground beans 668

Punching the radio buttons 669

Using more input types 670

Adding the number and date input types 671

Completing the form 672

Adding the checkboxes and text area 673

Watching GET in action 679

Getting the form elements into HTML structure 684

Styling the form with CSS 686

A word about accessibility 688

What more could possibly go into a form? 689

Exercise Solutions 693

table of contents

xxiv

15 The Top Ten Topics (We Didn’t Cover)

i Index

711

appendix: leftovers

We covered a lot of ground, and
you’re almost finished with this
book. We’ll miss you, but before we let you

go, we wouldn’t feel right about sending you out

into the world without a little more preparation.

We can’t possibly fit everything you’ll need to

know into this relatively short chapter. Actually,

we did originally include everything you need to

know about HTML and CSS (not already covered

by the other chapters), by reducing the type point

size to .00004. It all fit, but nobody could read it.

So, we threw most of it away, and kept the best

bits for this Top Ten appendix.

#1 More CSS selectors 698

#2 Vendor-specific CSS properties 700

#3 CSS transforms and transitions 701

#4 Interactivity 703

#5 HTML5 APIs and web apps 704

#6 More on Web Fonts 706

#7 Tools for creating web pages 707

#8 XHTML5 708

#9 Server-side scripting 709

#10 Audio 710

table of contents

xxv

Make it Stick

Intro
how to use this book

I can’t believe
they put that in an

HTML book!

In this section, we answer the burning questi
on:

“So, why DID they put that in an
HTML book?”

how to use this book

xxvi intro

Who is this book for ?

1 Do you have access to a computer with a web browser
and a text editor?

2 Do you want to learn, understand, and remember how
to create web pages using the best techniques and the
most recent standards?

this book is for you.

Who should probably back away from this book?

1 Are you completely new to computers?
(You don’t need to be advanced, but you should
understand folders and files, simple text editing
applications, and how to use a web browser.)

3

this book is not for you.

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if HTML tags are anthropomorphized?

If you can answer “yes” to all of these:

If you can answer “yes” to any one of these:

2 Are you a kick-butt web developer looking for a
reference book?

[Note from marketing: this book is for anyone with a credit card.]

3 Do you prefer stimulating dinner-party conversation
to dry, dull, academic lectures?

If you have access to any computer manufactured in the last decade, the answer is yes.

the intro

you are here� xxvii

“How can this be a serious book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what you’re thinking.

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking.
You just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you—what happens inside your head
and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-
free zone. You’re studying. Getting ready for an exam. Or trying to
learn some tough technical topic your boss thinks will take a week,
10 days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s
trying to make sure that this obviously non-important content doesn’t
clutter up scarce resources. Resources that are better spent storing
the really big things. Like tigers. Like the danger of fire. Like how
you should never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank
you very much, but no matter how dull this book is, and how little
I’m registering on the emotional Richter scale right now, I really do
want you to keep this stuff around.”

And we know what your brain is thinking.

Your brain thinks THIS is important.

Great. Only
637 more dull, dry,

boring pages.

Your brain t
hinks

THIS isn’t worth
saving.

how to use this book

xxviii intro

We think of a “Head First” reader as a learner.

It really sucks to forget

your <body> element.

Does it make sense to

create a bathtub class for

my style, or just to style

the whole bathroom?

The head elem
ent is

where you put
 things

about your p
age.

Browsers make requests for HTML
pages or other resources, like images.

“Found it, here ya go”Web Server

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite: nice
downbeat tune.
 </p>
 <p>
 ...

So what does it take to learn something? First, you have to get it, then make

sure you don’t forget it. It’s not about pushing facts into your head. Based

on the latest research in cognitive science, neurobiology, and educational

psychology, learning takes a lot more than text on a page. We know what

turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words

alone, and make learning much more effective (up to 89%

improvement in recall and transfer studies). It also makes things

more understandable. Put the words within or near the

graphics they relate to, rather than on the bottom or on another

page, and learners will be up to twice as likely to solve problems

related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content

spoke directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t

take yourself too seriously. Which would you pay more attention to: a

stimulating dinner-party companion, or a lecture?

Get the learner to think more deeply. In other words,

unless you actively flex your neurons, nothing much happens in your

head. A reader has to be motivated, engaged, curious, and inspired

to solve problems, draw conclusions, and generate new

knowledge. And for that, you need challenges, exercises,

and thought-provoking questions, and activities that

involve both sides of the brain, and multiple senses.

Get—and keep—the reader’s attention. We’ve all

had the “I really want to learn this, but I can’t stay awake past page one”

experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have

to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re

talking emotions like surprise, curiosity, fun, “what the…?” , and the feeling of “I rule!” that comes

when you solve a puzzle, learn something everybody else thinks is hard, or realize you know

something that “I’m more technical than thou” Bob from engineering doesn’t.

the intro

you are here� xxix

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught how to learn.

But we assume that if you’re holding this book, you really want to learn
how to create web pages. And you probably don’t want to spend a lot of
time. And you want to remember what you read, and be able to apply it.
And for that, you’ve got to understand it. To get the most from this book,
or any book or learning experience, take responsibility for your brain.
Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best
to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff…

So how DO you get your brain to think HTML & CSS
are as important as a tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are
able to learn and remember even the dullest of topics, if you keep pounding on the same
thing. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try
to make sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxx intro

how to use this book

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth 1,024 words. And when text and pictures work together, we
embedded the text in the pictures because your brain works more effectively when the text is
within the thing the text refers to, as opposed to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area of
your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain is
tuned to pay attention to the biochemistry of emotions. That which causes you to feel something
is more likely to be remembered, even if that feeling is nothing more than a little humor,
surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening to a
presentation. Your brain does this even when you’re reading.

We included more than 100 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, while someone else just wants to see a
code example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you can
be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the gym.
But we did our best to make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person. And
your brain pays more attention to people than it does to things.

We used an 80/20 approach. We assume that if you’re going to be a kick-butt web developer,
this won’t be your only book. So we don’t talk about everything. Just the stuff you’ll actually need.

Here’s what WE did:

 BULLET POINTS

Puzzles

Be the Browser

body

html

h1 h2p p

img a em a

p

the intro

you are here� xxxi

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Here’s what YOU can do to bend
your brain into submission

1 Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

3 Read the “There Are No Dumb Questions.”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

4 Make this the last thing you read before
bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

6 Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

9 Create something!
Apply this to something new you’re designing, or
rework an older project. Just do something to get some
experience beyond the exercises and activities in
this book. All you need is a pencil and a problem
to solve…a problem that might benefit from using
HTML and CSS.

Cut this out and stick it on your refrigerator.

8 Feel something!
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

xxxii intro

Read me

how to use this book

This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at that
point in the book. And the first time through, you need to begin at the beginning, because
the book makes assumptions about what you’ve already seen and learned.

We begin by teaching basic HTML, then standards-based HTML5.

To write standards-based HTML, there are a lot of technical details you need to
understand that aren’t helpful when you’re trying to learn the basics of HTML. Our
approach is to have you learn the basic concepts of HTML first (without worrying about
these details), and then, when you have a solid understanding of HTML, teach you to
write standards-compliant HTML (the most recent version of which is HTML5). This
has the added benefit that the technical details are more meaningful after you’ve already
learned the basics.

It’s also important that you be writing compliant HTML when you start using CSS, so we
make a point of getting you to standards-based HTML before you begin any serious work
with CSS.

We don’t cover every single HTML element or attribute or CSS
property ever created.

There are a lot of HTML elements, a lot of attributes, and a lot of CSS properties. Sure,
they’re all interesting, but our goal was to write a book that weighs less than the person
reading it, so we don’t cover them all here. Our focus is on the core HTML elements and
CSS properties that matter to you, the beginner, and making sure that you really, truly,
deeply understand how and when to use them. In any case, once you’re done with Head
First HTML and CSS, you’ll be able to pick up any reference book and get up to speed
quickly on all the elements and properties we left out.

This book advocates a clean separation between the structure of
your pages and the presentation of your pages.

Today, serious web pages use HTML to structure their content, and CSS for style and
presentation. Nineties-era pages often used a different model, one where HTML was used
for both structure and style. This book teaches you to use HTML for structure and CSS
for style; we see no reason to teach you outdated bad habits.

We encourage you to use more than one browser with this book.

While we teach you to write HTML and CSS that are based on standards, you’ll still (and

the intro

you are here� xxxiii

probably always) encounter minor differences in the way web browsers display pages. So,
we encourage you to pick at least two modern browsers and test your pages using them.
This will give you experience in seeing the differences among browsers and in creating
pages that work well in a variety of them.

We often use tag names for element names.

Rather than saying “the a element,” or “the ‘a’ element,” we use a tag name, like “the <a>
element.” While this may not be technically correct (because <a> is an opening tag, not a
full-blown element), it does make the text more readable, and we usually follow the name
with the word “element” to avoid confusion.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. Don’t skip the exercises. The crossword puzzles are the
only things you don’t have to do, but they’re good for giving your brain a chance to think
about the words in a different context.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want
you to finish the book remembering what you’ve learned. Most reference books don’t have
retention and recall as a goal, but this book is about learning, so you’ll see some of the same
concepts come up more than once.

The examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of an example looking for
the two lines they need to understand. Most examples in this book are shown within the
smallest possible context, so that the part you’re trying to learn is clear and simple. Don’t
expect all of the examples to be robust, or even complete—they are written specifically for
learning, and aren’t always fully functional.

We’ve placed all the example files on the Web so you can download them. You’ll find them
at http://wickedlysmart.com/hfhtmlcss/.

The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of the Brain Power exercises, you will find hints to point you in the right direction.

xxxiv intro

Tech reviewers (first edition)

the review team

Fearless leader
of the Extreme
Review Team

Johannes de Jong

Louise Barr
Barney Marispini

Ike Van Atta

Valentin Crettaz

Our reviewers:

We’re extremely grateful for our technical review team. Johannes de Jong
organized and led the whole effort, acted as “series dad,” and made it all work
smoothly. Pauline McNamara, “co-manager” of the effort, held things together
and was the first to point out when our examples were a little more “baby boomer”
than hip. The whole team proved how much we needed their technical expertise
and attention to detail. Valentin Crettaz, Barney Marispini, Marcus
Green, Ike Van Atta, David O’Meara, Joe Konior, and Corey McGlone
left no stone unturned in their review and the book is much better for it. You guys
rock! And further thanks to Corey and Pauline for never letting us slide on our
often too formal (or we should just say it, incorrect) punctuation. A shout-out to
JavaRanch as well for hosting the whole thing.

A big thanks to Louise Barr, our token web designer, who kept us honest on our
designs and on our use of HTML and CSS (although you’ll have to blame us for
the actual designs).

Corey McGlone

Marcus Green

Joe Konior

Pauline McNamara

David O’Meara

Pauline gets the “kick-ass
reviewer” award.

Eiffel Tower

the intro

you are here� xxxv

Even more technical review:

We’re also extremely grateful to our esteemed technical reviewer David Powers.
We have a real love/hate relationship with David because he made us work
so hard, but the result was oh so worth it. The truth be told, based on David’s
comments, we made significant changes to this book and it is technically twice the
book it was before. Thank you, David.

At O’Reilly:

Our biggest thanks to our editor, Brett McLaughlin, who cleared the path for
this book, removed every obstacle to its completion, and sacrificed family time to
get it done. Brett also did hard editing time on this book (not an easy task for a
Head First title). Thanks, Brett; this book wouldn’t have happened without you.

Our sincerest thanks to the whole O’Reilly team:
Greg Corrin, Glenn Bisignani, Tony Artuso,
and Kyle Hart all led the way on marketing
and we appreciate their out-of-the-box approach.
Thanks to Ellie Volkhausen for her inspired cover design that continues to serve
us well, and to Karen Montgomery for stepping in and bringing life to this book’s
cover. Thank you, as always, to Colleen Gorman for her hardcore copyedit (and for
keeping it all fun). And we couldn’t have pulled off a color book like this without Sue
Willing and Claire Cloutier.

No Head First acknowledgment would be complete without thanking Mike
Loukides for shaping the Head First concept into a series, and to Tim O’Reilly for always being there and his
continued support. Finally, thanks to Mike
Hendrickson for bringing us into the Head
First family and having the faith to let us run
with it.

Kathy Sierra and Bert Bates:

Last, and anything but least, to Kathy
Sierra and Bert Bates, our partners
in crime and the BRAINS who created the
series. Thanks, guys, for trusting us even more
with your baby. We hope once again we’ve
done it justice. The three-day jam session was
the highlight of writing the book, we hope to
repeat it soon. Oh, and next time around, can
you give LTJ a call and tell him he’s just going
to have to make a trip back to Seattle?

Acknowledgments (first edition)*

Kathy Sierra

*The large number of acknowledgments is because we’re testing the theory
that everyone mentioned in a book acknowledgment will buy at least one copy,
probably more, what with relatives and everything. If you’d like to be in the
acknowledgment of our next book, and you have a large family, write to us.

Don’t let the sweater fool
you—this guy is hardcore
(technically of course).

Hard at work researching
Head First Parelli

Bert Bates

Kara

Esteemed Reviewer
David Powers

Brett McLaughlin

xxxvi intro

Our biggest thanks to our chief editor, Mike Hendrickson, who
made this book happen in every way (other than actually writing it) ,
was there for us the entire journey, and more importantly (the biggest
thing any editor can do) totally trusted us to get it done! Thanks, Mike;
none of our books would have happened without you. You’ve been our
champion for well over a decade and we love you for it!

Of course it takes a village to publish a book, and behind the scenes a
talented and friendly group at O’Reilly made it all happen. Our sincerest
thanks to the whole O’Reilly team: Kristen Borg (production editor
extraordinaire); the brilliant Rachel Monaghan (proofreader); Ron
Strauss for his meticulous index; Rebecca Demarest for illustration
help; Karen Montgomery, ace cover designer; and last but definitely
not least, Louise Barr, who always helps our pages look better.

Tech reviewers (second edition)

the review team

Acknowledgments (second edition)

Less pink, more HTML & CSS power!

David Powers

Lou Barr

We couldn’t sleep at night without knowing that our high-
powered HTML & CSS reviewer, David Powers, has scoured
this book for inaccuracies. Truth is, so many years had passed
since the first edition that we had to hire a private detective
to locate him (it’s a long story, but he was finally located in his
underground HTML & CSS lair and research lab). Anyway, more
seriously, while all the technical faults in this book sit solely with
the authors (that’s us), we can assure you in every case David
tried to make sure we did things right. Once again, David was
instrumental in the writing of this book.

We’re extremely grateful for everyone on our technical review
team. Joe Konior joined us once again for this edition, along
with Dawn Griffiths (co-author of Head First C), and Shelley
Powers (an HTML & CSS “power”house who has been writing
about the Web for years). Once again, you all rock! Your feedback
was amazingly thorough, detailed, and helpful. Thank you.

Mike Hendrickson

Dawn Griffiths

Joe Konior

the intro

you are here� xxxvii

Safari® Books Online is an on-demand digital library that lets
you easily search over 7,500 technology and creative reference
books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, and get exclusive access to manuscripts in development
and post feedback for the authors. Copy and paste code samples, organize your
favorites, download chapters, bookmark key sections, create notes, print out pages,
and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com.

Safari® Books Online

this is a new chapter 1

The only thing that is standing between you and getting
yourself on the Web is learning to speak the lingo:

HyperText Markup Language, or HTML for short. So, get ready for some language

lessons. After this chapter, not only are you going to understand some basic

elements of HTML, but you’ll also be able to speak HTML with a little style. Heck,

by the end of this book you’ll be talking HTML like you grew up in Webville.

The Language of the Web
1 getting to know HTML

Not so fast…to get to
know me, you’ve got to

speak the universal language.
You know, HTML and CSS.

2 Chapter 1

html powers the web

Video killed the radio star
The Web

Want to get an idea out there? Sell something? Just need a creative
outlet? Turn to the Web—we don’t need to tell you it has become
the universal form of communication. Even better, it’s a form of
communication YOU can participate in.

But if you really want to use the Web effectively, you’ve got to
know a few things about HTML—not to mention, a few things
about how the Web works too. Let’s take a look from 30,000 feet:

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick'n Tunes

 </h1>

 <p>BT - Satellite: nice
downbeat tune.
 </p>

 <p>

 ...

The Internet

To make web pages, you create
files written in the HyperText
Markup Language (HTML for
short) and place them on a web
server (we’ll talk about how to
get your files on a server later
in the book).

Once you’ve put your files on
a web server, any browser can
retrieve your web pages over
the Internet.

And there are a lot of PCs and devices
connected to the Internet all running web
browsers. More importantly, there are
friends, family, fans, and potential customers
using those devices!

Web Server

The HTML in your web page tells the
browser what it needs to know to display
your page. And, if you’ve done your job
well, your pages will even display well on cell
phones and mobile devices, and work with
speech browsers and screen magnifiers for
the visually impaired.

you are here 4 3

the language of the web

What does the web server do?
Web servers have a full-time job on the Internet, tirelessly waiting for requests from web
browsers. What kinds of requests? Requests for web pages, images, sounds, or maybe
even a video. When a server gets a request for any of these resources, the server finds the
resource, and then sends it back to the browser.

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick’n Tunes

 </h1>

 <p>BT - Satellite: nice downbeat
tune.
 </p>

 <p>

 ...

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick’n Tunes

 </h1>

 <p>BT - Satellite: nice downbeat
tune.
 </p>

 <p>

 ...

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick’n Tunes

 </h1>

 <p>BT - Satellite: nice downbeat
tune.
 </p>

 <p>

 ...

What does the web browser do?
You already know how a browser works: you’re surfing around the Web and you click on a
link to visit a page. That click causes your browser to request an HTML page from a web
server, retrieve it, and display the page in your browser window.

Each server
stores HTML
files, pictures,
sounds and other
file types.

Browsers make requests for HTML pages or other resources, like images.

…and if the server can
locate the resource, it
sends it to the browser.

“I

 ne
ed the HTML file ‘lounge.html’”

“Found it, here ya go”

Web Server

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick’n Tunes

 </h1>

 ...

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick’n Tunes

 </h1>

 <p>BT - Satellite: nice downbeat
tune.
 </p>

 <p>

 ...

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick’n Tunes

 </h1>

 ...

Web Server

The serve
r “serves

 up”

web pages
 and sen

ds

them to the
browser.

The browser retrieves the page…

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick’n Tunes

 </h1>

 <p>BT - Satellite: nice downbeat tune.
 </p>

 <p>

 ...

<html>

 <head>

 <title>

 Head First Lounge
 </title>

 <head>

 <body>

 <h1>Welcome to Head

 </h1>

 <img src="drinks.gi

 <p>Join us any even
 </p>

 <p>

 ...

The server’s just a computer
connected to the Internet waiting

for requests from browsers.

…and the browser displays
the HTML page.

But how does the browser know how to display a page? That’s where HTML comes in. HTML
tells the browser all about the content and structure of the page. Let’s see how that works…

4 Chapter 1

writing some html

<html>

 <head>

 <title>Head First Lounge</title>

 </head>

 <body>

 <h1>Welcome to the Head First Lounge</h1>

 <p>

 Join us any evening for refreshing elixirs,

 conversation and maybe a game or

 two of Dance Dance Revolution.

 Wireless access is always provided;

 BYOWS (Bring your own web server).

 </p>

 <h2>Directions</h2>

 <p>

 You'll find us right in the center of

 downtown Webville. Come join us!

 </p>

 </body>

</html>

A

C

D

E

F

G

What you write (the HTML)
So, you know HTML is the key to getting a browser to display your pages, but
what exactly does HTML look like? And what does it do?

Let’s have a look at a little HTML…imagine you’re going to create a web
page to advertise the Head First Lounge, a local hangout with some good tunes,
refreshing elixirs, and wireless access. Here’s what you’d write in HTML:

Relax We don’t expect you to know HTML yet.

 At this point you should just be getting a feel
for what HTML looks like; we’re going to cover

everything in detail in a bit. For now, study the HTML and see
how it gets represented in the browser on the next page. Be sure
to pay careful attention to each letter annotation and how and
where it is displayed in the browser.

B

you are here 4 5

the language of the web

What the browser creates
When the browser reads your HTML, it interprets all the tags that
surround your text. Tags are just words or characters in angle brackets,
like <head>, <p>, <h1>, and so on. The tags tell the browser about the
structure and meaning of your text. So rather than just giving the browser
a bunch of text, with HTML you can use tags to tell the browser what
text is in a heading, what text is a paragraph, what text needs to be
emphasized, or even where images need to be placed.

Let’s check out how the browser interprets the tags in the
Head First Lounge:

A

B

C

D
E

F

G

Notice how each tag in
the HTML maps to what
the browser displays.

6 Chapter 1

more about markup and tags

Q: So HTML is just a bunch of tags
that I put around my text?

A: For starters. Remember that HTML
stands for HyperText Markup Language, so
HTML gives you a way to “mark up” your text
with tags that tell the browser how your text
is structured. But there is also the HyperText
aspect of HTML, which we’ll talk about a little
later in the book.

Q: How does the browser decide how
to display the HTML?

A: HTML tells your browser about the
structure of your document: where the
headings are, where the paragraphs are,
what text needs emphasis, and so on. Given
this information, browsers have built-in
default rules for how to display each of these
elements.

But you don’t have to settle for the default
settings. You can add your own style and
formatting rules with CSS that determine
font, colors, size, and a lot of other
characteristics of your page. We’ll get back
to CSS later in the chapter.

Q: The HTML for the Head First
Lounge has all kinds of indentation and
spacing, and yet I don’t see that when it
is displayed in the browser. How come?

A: Correct, and good catch. Browsers
ignore tabs, returns, and most spaces in
HTML documents. Instead, they rely on
your markup to determine where line and
paragraph breaks occur.

So why did we insert our own formatting if
the browser is just going to ignore it? To help
us more easily read the document when
we’re editing the HTML. As your

HTML documents become more complicated,
you’ll find a few spaces, returns, and tabs
here and there really help to improve the
readability of the HTML.

Q: So there are two levels of headings,
<h1> and a subheading <h2>?

A: Actually there are six, <h1> through
<h6>, which the browser typically displays in
successively smaller font sizes. Unless you
are creating a complex and large document,
you typically won’t use headings beyond
<h3>.

Q: Why do I need the <html> tag? Isn’t
it obvious this is an HTML document?

A: The <html> tag tells the browser your
document is actually HTML. While some
browsers will forgive you if you omit it, some
won’t, and as we move toward “industrial-
strength HTML” later in the book, you’ll see it
is quite important to include this tag.

Q: What makes a file an HTML file?

A: An HTML file is a simple text file.
Unlike a word processing file, there is
no special formatting embedded in it. By
convention, we add an “.html” to the end of
the filename to give the operating system a
better idea of what the file is. But, as you’ve
seen, what really matters is what we put
inside the file.

Q: Everyone is talking about HTML5.
Are we using it? If so, why aren’t we
saying “HTML-FIVE” instead of “HTML”?

A: You’re learning about HTML, and
HTML5 just happens to be the latest version
of HTML. HTML5 has had a lot of attention
recently, and that’s because it simplifies

many of the ways we write HTML and
enables some new functionality, which
we’re going to cover in this book. It also
provides some advanced features through
its JavaScript application programming
interfaces (APIs), and those are covered in
Head First HTML5 Programming.

Q: Markup seems silly. What-you-see-
is-what-you-get applications have been
around since, what, the ’70s? Why isn’t
the Web based on a format like Microsoft
Word or a similar application?

A: The Web is created out of text files
without any special formatting characters.
This enables any browser in any part of the
world to retrieve a web page and understand
its contents. There are WYSIWYG
applications out there like Dreamweaver,
and they work great. But in this book we’re
going to take it down to the bare metal, and
start with text. Then you’re in good shape
to understand what your Dreamweaver
application is doing behind the scenes.

Q: Is there any way to put comments
to myself in HTML?

A: Yes, if you place your comments in
between <!-- and --> the browser will totally
ignore them. Say you wanted to write a
comment “Here’s the beginning of the lounge
content.” You’d do that like this:

<!-- Here's the beginning of
the lounge content -->

Notice that you can put comments on
multiple lines. Keep in mind anything you put
between the “<!--” and the “-->”, even HTML,
will be ignored by the browser.

you are here 4 7

the language of the web

<html>

 <head>

 <title>Head First Lounge</title>

 </head>

 <body>

 <h1>Welcome to the Head First Lounge</h1>

 <p>

 Join us any evening for refreshing elixirs,

 conversation and maybe a game or

 two of Dance Dance Revolution.

 Wireless access is always provided;

 BYOWS (Bring your own web server).

 </p>

 <h2>Directions</h2>

 <p>

 You'll find us right in the center of

 downtown Webville. Come join us!

 </p>

 </body>

</html>

You’re closer to learning HTML than you think…

Here’s the HTML for the Head First Lounge again. Take a look at the tags and see
if you can guess what they tell the browser about the content. Write your answers
in the space on the right; we’ve already done the first couple for you.

Tells the browser this is the start of HTML.
Starts the page “head” (more about this later).

8 Chapter 1

what the markup does

Tells the browser this is the start of HTML.

Gives the page a title.

Start of the body of page.
Tells browser that “Welcome to…” is a heading.

Places the image “drinks.gif” here.
Start of a paragraph.

End of paragraph.
Tells the browser that “Directions” is a
subheading.
Start of another paragraph.

End of paragraph.

End of the body.
Tells the browser this is the end of
the HTML.

End of the head.

Starts the page “head”.

Puts emphasis on Dance Dance Revolution.

<html>

 <head>

 <title>Head First Lounge</title>

 </head>

 <body>

 <h1>Welcome to the Head First Lounge</h1>

 <p>

 Join us any evening for refreshing elixirs,

 conversation and maybe a game or

 two of Dance Dance Revolution.

 Wireless access is always provided;

 BYOWS (Bring your own web server).

 </p>

 <h2>Directions</h2>

 <p>

 You'll find us right in the center of

 downtown Webville. Come join us!

 </p>

 </body>

</html>

you are here 4 9

the language of the web

Starbuzz Coffee has made a name for itself as the fastest
growing coffee shop around. If you’ve seen one on your local
corner, look across the street—you’ll see another one.

In fact, they’ve grown so quickly, they haven’t even managed
to put up a web page yet…and therein lies your big break: By
chance, while buying your Starbuzz Chai Tea, you run into
the Starbuzz CEO…

Your big break at Starbuzz Coffee

The Starbuzz CEO

Decisions, decisions.
Check your first priority below (choose only one):

Word has it you
know a little about HTML.
We really need a web page

that features the Starbuzz
offerings. Can you help?

A. Give dog a bath.

B. Finally get my checking
 account balanced.

C. Take the Starbuzz gig and
 launch BIG-TIME web career.

D. Schedule dentist appointment.

10 Chapter 1

what goes on the starbuzz page

Wonderful! We’re so
glad you’ll be helping us.
Here’s what we need on

our first page…

Take a look at the napkin. Can you
determine the structure of it? In other
words, are there obvious headings?
Paragraphs? Is it missing anything like a
title?
Go ahead and mark up the napkin (using
your pencil) with any structure you see,
and add anything that is missing.
You’ll find our answers at the end of
Chapter 1.

Thanks for giving us a hand
!

On the web page we just need

something simple (see below) that

includes the beverage nam
es, prices,

and descriptions.

House Blend, $1.49
A smooth, mild blend of coffees from

 Mexico, Bolivia

and Guatemala.

Mocha Cafe Latte, $2.35

Espresso, steamed milk and chocolate syrup.

Cappuccino, $1.89
A mixture of espresso, steamed milk and foam.

Chai Tea, $1.85
A spicy drink made with black tea, spices, milk and honey.

Starbuzz Coffe
e

St
ar

buzz Coffee

The CEO scribbles

something on a
 napkin

and hands i
t to you…

* If by chance you chose option A, B, or D on the previous
page, we recommend you donate this book to a good library,
use it as kindling this winter, or what the heck, go ahead
and sell it on Amazon and make some cash.

*

you are here 4 11

the language of the web

Create an HTML file using your favorite
text editor.

Of course, the only problem with all this is that
you haven’t actually created any web pages yet.
But that’s why you decided to dive head first into
HTML, right?

No worries, here’s what you’re going to do on
the next few pages:

Type in the menu the Starbuzz CEO wrote
on the napkin.

1

2

Save the file as “index.html”.3

Open the file “index.html” in your favorite browser,
step back, and watch the magic happen.

4

Creating the Starbuzz web page

No pressure, but thousands of
people are going to visit this web

page when you’re finished. It not only
needs to be correct, it’s gotta look

great, too!

12 Chapter 1

writing html on a macintosh

Creating an HTML file (Mac)

Navigate to your Applications folder

Locate and run TextEdit

Keep TextEdit in your Dock

All HTML files are text files. To create a text file, you
need an application that allows you to create plain text
without throwing in a lot of fancy formatting and special
characters. You just need plain, pure text.

We’ll use TextEdit on the Mac in this book; however, if
you prefer another text editor, that should work fine as
well. And, if you’re running Windows, you’ll want to skip
ahead a couple of pages to the Windows instructions.

The TextEdit application is in the Applications
folder. The easiest way to get there is to
choose New Finder Window from the Finder’s
File menu and then look for the Application
directly in your shortcuts. When you’ve found
it, click on Applications.

You’ll probably have lots of applications listed
in your Applications folder, so scroll down until
you see TextEdit. To run the application,
double-click on the TextEdit icon.

If you want to make your life easier,
click and hold on the TextEdit icon in
the Dock (this icon appears once the
application is running). When it displays
a pop-up menu, choose Options, then

“Keep in Dock.” That way, the TextEdit
icon will always appear in your Dock
and you won’t have to hunt it down in
the Applications folder every time you
need to use it.

Step one:

Step two:

Step three (optional):

Your Finder
shortcuts

Here’s TextEdit.

you are here 4 13

the language of the web

Change your TextEdit Preferences
By default, TextEdit is in “rich text”
mode, which means it will add its own
formatting and special characters
to your file when you save it—not
what you want. So, you’ll need to
change your TextEdit Preferences so
that TextEdit saves your work as a
pure text file. To do this, first choose
the Preferences menu item from the
TextEdit menu.

Step four:

Set Preferences for Plain text
Once you see the Preferences dialog
box, there are three things you need
to do.

First, choose “Plain text” as the
default editor mode in the New
Document tab.

In the “Open and Save” tab, make
sure “Ignore rich text commands in
HTML files” is checked.

Last, make sure that the “Add .txt
extension to plain text files” is
unchecked.

That’s it; to close the dialog box,
click on the red button in the top-
left corner.

Step five:

Quit and restart
Now quit out of TextEdit by choosing
Quit from the TextEdit menu, and then
restart the application. This time, you’ll
see a window with no fancy text formatting
menus at the top. You’re now ready to create
some HTML.

Step six:

This text formatting menu means you’re in “rich text” mode. If you see these, you need to change your preferences.

See, the formatting menu is gone: that means we’re in text mode.

14 Chapter 1

writing html on windows

Creating an HTML file (Windows)

Open the Start menu and navigate to Notepad.

If you’re reading this page you must be a Windows 7 user. If you’re not,
you might want to skip a couple of pages ahead. Or, if you just want to sit
in the back and not ask questions, we’re okay with that too.

To create HTML files in Windows 7, we’re going to use Notepad—it ships
with every copy of Windows, the price is right, and it’s easy to use. If
you’ve got your own favorite editor that runs on Windows 7, that’s fine too;
just make sure you can create a plain-text file with an “.html” extension.

Assuming you’re using Notepad, here’s how you’re going to create your
first HTML file.

You’ll find the Notepad application in Accessories. The
easiest way to get there is to click on the Start menu, then
on All Programs, then Accessories. You’ll see Notepad
listed there.

Step one:

If you’re using anothe
r

version of Windows, you’ll

find Notepad there as well.

Or another version of Windows

you are here 4 15

the language of the web

Open Notepad.
Once you’ve located Notepad in the
Accessories folder, go ahead and click on
it. You’ll see a blank window ready for
you to start typing HTML.

Step two:

Don’t hide extensions of
well-known file types.

By default, Windows File Explorer hides the
file extensions of well-known file types. For
example, a file named “Irule.html” will be
shown in the Explorer as “Irule” without its

“.html” extension.

It’s much less confusing if Windows shows you
these extensions, so let’s change your folder
options so you can see them.

First, open Folder Options by clicking the
Start button, clicking Control Panel, clicking

“Appearance and Personalization,” and then
clicking Folder Options.

Next, in the View tab, under “Advanced
settings,” scroll down until you see “Hide
extensions for known file types” and uncheck this
option.

That’s it. Click on the OK button to save
the preference and you’ll now see the file
extensions in the Explorer.

Step three (optional):

But recommended

16 Chapter 1

editors and html

Q: Why am I using a simple text editor?
Aren’t there powerful tools like Dreamweaver
and Expression Web for creating web pages?

A: You’re reading this book because you want
to understand the true technologies used for web
pages, right? Now those are all great tools, but
they do a lot of the work for you, and until you
are a master of HTML and CSS, you want to learn
this stuff without a big tool getting in your way.

Once you’re a master, however, these tools do
provide some nice features like syntax checking
and previews. At that point, when you view the

“code” window, you’ll understand everything in it,
and you’ll find that changes to the raw HTML and
CSS are often a lot faster than going through a
user interface. You’ll also find that as standards
change, these tools aren’t always updated right
away and may not support the most recent
standards until their next release cycle. Since
you’ll know how to change the HTML and CSS
without the tool, you’ll be able to keep up with the
latest and greatest all the time.

There are many more fully featured editors that
include great features like clips (for automatically
inserting bits of HTML you write often), preview
(for previewing directly in the editor before you
test in the browser), syntax coloring (so tags are
a different color from content), and much more.
Once you get the hang of writing basic HTML and
CSS in a simple editor, it may be worth checking
out one of the fancier editors, such as Coda,
TextMate, CoffeeCup, or Aptana Studio. There
are many out there to choose from (both free and
not).

Q: I get the editor, but what browser am I
supposed to be using? There are so many—
Internet Explorer, Chrome, Firefox, Opera,
Safari—what’s the deal?

A: The simple answer: use whatever browser
you like. HTML and CSS are industry standards,
which means that all browsers try to support
HTML and CSS in the same way (just make sure
you are using the newest version of the browser
for the best support).

The complex answer: in reality there are slight
differences in the way browsers handle your
pages. If you’ve got users who will be accessing
your pages in a variety of browsers, then always
test your web page in several different browsers.
Some pages will look exactly the same; some
won’t. The more advanced you become
with HTML and CSS, the more these slight
differences may matter to you, and we’ll get into
some of these subtleties throughout the book.

Any of the major browsers—Internet Explorer,
Chrome, Firefox, Opera, and Safari—will work
for most examples (except where noted); they
are all modern browsers with great HTML and
CSS support. And as a web developer, you'll
be expected to test your code in more than one
browser, so we encourage you to download and
get familiar with at least two!

Q: I’m creating these files on my own
computer—how am I going to view these on
the Web?

A: That’s one great thing about HTML: you
can create files and test them on your own
computer and then later publish them on the
Web. Right now, we’re going to worry about how
to create the files and what goes in them. We’ll
come back to getting them on the Web a bit later.

you are here 4 17

the language of the web

Okay, now that you know the basics of creating a plain-text file, you just
need to get some content into your text editor, save it, and then load it into
your browser.

Start by typing in the beverages straight from the CEO’s napkin; these
beverages are the content for your page. You’ll be adding some HTML
markup to give the content some structure in a bit, but for now, just get
the basic content typed in. While you’re at it, go ahead and add “Starbuzz
Coffee Beverages” at the top of the file.

Meanwhile, back at Starbuzz Coffee…

Mac

Windows

Type in the info from
the napkin like this.

18 Chapter 1

saving your html

Saving your work
Once you’ve typed in the beverages from the CEO’s napkin, you’re going to
save your work in a file called “index.html”. Before you do that, you’ll want to
create a folder named “starbuzz” to hold the site’s files.

To get this all started, choose Save from the File menu and you’ll see a Save As
dialog box. Then, here’s what you need to do:

Mac

WindowsFirst, create a “starbuzz” folder
for all your Starbuzz-related
files. You can do this with the
New Folder button.

1

Next, click on the newly created
“starbuzz” folder and then enter
“index.html” as the filename and click
on the Save button.

2

Click here to
create a new folder.

Create a new
folder here.

Create a new
folder here.

When you save, make sure UTF-8 is selected for the encoding on
both Mac and Windows.

Click to save.

Click to save.

Don't worry about
UTF-8 for now;
we'll come back to
that later.

you are here 4 19

the language of the web

Opening your web page in a browser
Are you ready to open your first web page? Using your
favorite browser, choose “Open File…” (or “Open…”
using Windows 7 and Internet Explorer) from the File
menu and navigate to your “index.html” file. Select it
and click Open.

Mac

On the Mac, navigate to your
file, and select it by clicking
on the file icon and then on
the Open button.

Then click Browse to get a
browse dialog and navigate to
where you saved your file.

Windows In Windows Internet Explorer it’s a two-step process. First, you’ll get the Open dialog box.

20 Chapter 1

testing your html

Mac

WindowsTake your page for a
test drive
Success! You’ve got the page loaded in
the browser, although the results are
a little…uh…unsatisfying. But that’s
just because all you’ve done so far is go
through the mechanics of creating a page
and viewing it in the browser. And so
far, you’ve only typed in the content of the
web page. That’s where HTML comes
in. HTML gives you a way to tell the
browser about the structure of your page.
What’s structure? As you’ve already seen,
it is a way of marking up your text so
that the browser knows what’s a heading,
what text is in a paragraph, what text is a
subheading, and so on. Once the browser
knows a little about the structure, it can
display your page in a more meaningful
and readable manner.

Depending on your operating system and
browser, often you can just double-click
the HTML file or drag it on top of the
browser icon to open it. Much simpler.

you are here 4 21

the language of the web

Starbuzz Coffee Beverages

House Blend, $1.49

A smooth, mild blend of coffees from Mexico, Bolivia and
Guatemala.

Mocha Cafe Latte, $2.35

Espresso, steamed milk and chocolate syrup.

Cappuccino, $1.89

A mixture of espresso, steamed milk and foam.

Chai Tea, $1.85

A spicy drink made with black tea, spices, milk and honey.

Use this magnet
to start a
heading. Use this magnet

to end a heading.
Use this magnet
to end a
subheading.

Use this magnet
to start a
subheading.

Use this magnet
to end a
paragraph.

Use this
magnet to
start a
paragraph.

Markup Magnets
So, let’s add that structure…

Your job is to add structure to the text from the Starbuzz napkin. Use
the fridge magnets at the bottom of the page to mark up the text
so that you’ve indicated which parts are headings, subheadings and
paragraph text. We’ve already done a few to get you started. You won’t
need all the magnets below to complete the job; some will be left over.

<h1> </h1>

<h2> </h2>

<p> </p>

<h1>
<h1>
<h1>

</h1>
</h1>
</h1>

<h2>
<h2><h2>

</h2>
</h2>
</h2>

<p>
<p>

<p>

</p>
</p>

</p>

22 Chapter 1

your first html markup

<h1>Starbuzz Coffee Beverages</h1>

<h2>House Blend, $1.49</h2>

<p>A smooth, mild blend of coffees from Mexico, Bolivia
and Guatemala.</p>

<h2>Mocha Cafe Latte, $2.35</h2>

<p>Espresso, steamed milk and chocolate syrup.</p>

<h2>Cappuccino, $1.89</h2>

<p>A mixture of espresso, steamed milk and foam.</p>

<h2>Chai Tea, $1.85</h2>

<p>A spicy drink made with black tea, spices, milk and
honey.</p>

Congratulations,
you’ve just written
your first HTML!

They might have looked like fridge
magnets, but you were really marking up
your text with HTML. Only, as you know,
we usually refer to the magnets as tags.

Check out the markup below and compare it to
your magnets on the previous page.

Use the <h1> and </h1> tags t
o mark

headings. All the text in between is the

actual content of the headin
g.

The <h2> and </h2> tags
go around a subheading.
Think of an <h2> heading
as a subheading of an <h1>
heading.

The <p> and </p> tags go around a block of text that is a paragraph. That can be one or many sentences.

Notice that you don’t have to put matching tags on the same line. You can put as much content as you like between them.

you are here 4 23

the language of the web

<html>

 <head>

 <title>Starbuzz Coffee</title>

 </head>

 <body>

 <h1>Starbuzz Coffee Beverages</h1>

 <h2>House Blend, $1.49</h2>

 <p>A smooth, mild blend of coffees from Mexico,

 Bolivia and Guatemala.</p>

 <h2>Mocha Cafe Latte, $2.35</h2>

 <p>Espresso, steamed milk and chocolate syrup.</p>

 <h2>Cappuccino, $1.89</h2>

 <p>A mixture of espresso, steamed milk and foam.</p>

 <h2>Chai Tea, $1.85</h2>

 <p>A spicy drink made with black tea, spices,

 milk and honey.</p>

 </body>

</html>

Are we there yet?
You have an HTML file with markup—does that make a web page? Almost.
You’ve already seen the <html>, <head>, <title>, and <body> tags, and
we just need to add those to make this a first-class HTML page…

Next add <head> and </head
> tags. The

head contains information about your web

page, like its title. For now, think about it

this way: the head allows you to tell the

browser things about the web page.

The body contains all the content and structure of your web page—the parts of the web page that you see in your browser.

The head consists of the <head>
& </head> tags and everything
in between.

The body consists
of the <body>
& </body> tags
and everything in
between.

First, surround your HTML
with <html> & </html>
tags. This tells the browser
the content of the file is
HTML.

Go ahead and put a title
inside the head. The title
usually appears at the top
of the browser window.

Keep your head
and body separate
when writing HTML.

24 Chapter 1

another test with some markup

Notice that the title,
which you specified in
the <head> element,
shows up here.

Another test drive
Go ahead and change your “index.html” file by adding
in the <head>, </head>, <title>, </title>, <body> and
</body> tags. Once you’ve done that, save your
changes and reload the file into your browser.

You can reload the index.html file by
selecting the Open File menu item again, or
by using your browser’s reload button.

Now things look a bit better.
The browser has interpreted
your tags and created a
display for the page that
is not only more structured,
but also more readable.

Sweet!

you are here 4 25

the language of the web

This is the closing tag
that ends the heading;
in this case the </h1>
tag is ending an <h1>
heading. You know it’s
a closing tag because
it comes after the
content, and it’s got a
“/” before the “h1”. All
closing tags have a “/”
in them.

The whole shebang is called an element. In this case, we
can call it the <h1> element. An element consists of the
enclosing tags and the content in between.

Here’s the opening tag
that begins the heading.

Tags dissected
Okay, you’ve seen a bit of markup, so let’s zoom in
and take a look at how tags really work.

<h1> Starbuzz Coffee Beverages </h1>

You usually put tags around some piece of content.
Here we’re using tags to tell the browser that our
content, “Starbuzz Coffee Beverages,” is a top-
level heading (that is, heading level one).

Tags consist of the tag
name

surrounded by angle bra
ckets;

that is, the < and > cha
racters.

To tell the browser about the structure of your
page, use pairs of tags around your content.

Remember:
Element = Opening Tag + Content + Closing Tag

We call an opening tag
and its closing tag
matching tags.

26 Chapter 1

elements and matching tags

<p id="houseblend">A smooth, mild
blend of coffees from Mexico, Bolivia
and Guatemala.</p>

Q: So matching tags don’t have to be
on the same line?

A: No; remember the browser doesn’t
really care about tabs, returns, and most
spaces. So, your tags can start and end
anywhere on the same line, or they can start
and end on different lines. Just make sure
you start with an opening tag, like <h2>, and
end with a closing tag, like </h2>.

Q: Why do the closing tags have that
extra “/”?

A: That “/” in the closing tag is to help
both you and the browser know where a
particular piece of structured content ends.
Otherwise, the closing tags would look just
like the opening tags, right?

Q: I’ve noticed the HTML in some
pages doesn’t always match opening tags
with closing tags.

A: Well, the tags are supposed to match.
In general, browsers do a pretty good job
of figuring out what you mean if you write
incorrect HTML. But, as you’re going to see,
these days there are big benefits to writing
totally correct HTML. If you’re worried you’ll
never be able to write perfect HTML, don’t
be; there are plenty of tools to verify your
code before you put it on a web server so
the whole world can see it. For now, just get
in the habit of always matching your opening
tags with closing tags.

Q: Well, what about that <img
src=“drinks.gif”> tag in the lounge
example? Did you forget the closing tag?

A: Wow, sharp eye. There are some
elements that use a shorthand notation with
only one tag. Keep that in the back of your
mind for now, and we’ll come back to it in a
later chapter.

Q: An element is an opening tag +
content + closing tag, but can’t you have
tags inside other tags? Like the <head>
and <body> are inside an <html> tag?

A: Yes, HTML tags are often “nested”
like that. If you think about it, it’s natural
for an HTML page to have a body, which
contains a paragraph, and so on. So many
HTML elements have other HTML elements
between their tags. We’ll take a good look
at this kind of thing in later chapters, but
for now just get your mind noticing how the
elements relate to each other in a page.

Tags can be a little more interesting than what you’ve seen so far. Here’s the
paragraph tag with a little extra added to it. What do you think this does?

you are here 4 27

the language of the web

To provide all the

caffeine that you

need to power your
life.

 Just drink it.

Starbuzz Coffee’s

Mission

Write the HTML for the new
“mission.html” page here.

Type in your HTML using a text
editor, and save it as “mission.
html” in the same folder as your

“index.html” file.

Once you’ve done that, open
“mission.html” in your browser.

Check your work at the end of
the chapter before moving on…

1

2

3

4

Oh, I forgot to mention,
we need our company mission

on a page, too. Grab the mission
statement off one of our coffee

cups and create another page
for it…

28 Chapter 1

using css for style

You already know that HTML gives
you a way to describe the structure
of the content in your files. When the
browser displays your HTML, it uses
its own built-in default style to present
this structure. But relying on the
browser for style obviously isn’t going
to win you any “designer of the month”
awards.

That’s where CSS comes in. CSS
gives you a way to describe how your
content should be presented. Let’s get
our feet wet by creating some CSS that
makes the Starbuzz page look a little
more presentable (and launch your
web career in the process).

Right. We have the
structure down, so now
we’re going to concentrate
on its presentation.

CSS is an abbreviation for Cascading Style Sheets. We’ll get into what that all means later, but for now just know that CSS gives you a way to tell the browser how elements in your page should look.

Okay, it looks like you’re
getting somewhere. You’ve got the

main page and the mission page all set.
But don’t forget the CEO said the site
needs to look great too. Don’t you think

it needs a little style?

you are here 4 29

the language of the web

Meet the style element
To add style, you add a new (say it with us) E-L-E-M-E-N-T
to your page—the <style> element. Let’s go back to the
main Starbuzz page and add some style. Check it out…

<html>
 <head>
 <title>Starbuzz Coffee</title>
 <style type="text/css">

 </style>
 </head>
 <body>
 <h1>Starbuzz Coffee Beverages</h1>

 <h2>House Blend, $1.49</h2>
 <p>A smooth, mild blend of coffees from Mexico, Bolivia and
 Guatemala.</p>

 <h2>Mocha Caffe Latte, $2.35</h2>
 <p>Espresso, steamed milk and chocolate syrup.</p>

 <h2>Cappuccino, $1.89</h2>
 <p>A mixture of espresso, steamed milk and milk foam.</p>

 <h2>Chai Tea, $1.85</h2>
 <p>A spicy drink made with black tea, spices, milk and honey.</p>
 </body>
</html>

Just like other elements, the <style>
element has an opening tag, <style>,
and a closing tag, </style>.

The <style> element is placed inside the

head of your HTML.

The <style> tag also has an (optional)
attribute, called type, which tells the
browser the kind of style you’re using.
Because you’re going to use CSS, you can
specify the “text/css” type.

And here’s where you’re
going to define the styles
for the page.

Q: An element can have an “attribute”? What does that
mean?

A: Attributes give you a way to provide additional information
about an element. Like, if you have a <style> element, the attribute
allows you to say exactly what kind of style you’re talking about.
You’ll be seeing a lot more attributes for various elements; just
remember they give you some extra info about the element.

Q: Why do I have to specify the type of the style (“text/css”)
as an attribute of the style? Are there other kinds of style?

A: At one time the designers of HTML thought there would be
other styles, but as it turns out we’ve all come to our senses since
then and you can just use <style> without an attribute—all the
browsers will know you mean CSS. We’re disappointed; we were
holding our breath for the <style type=“50sKitsch”> style. Oh well.

30 Chapter 1

adding a style element

Now that you’ve got a <style> element in the HTML head, all you need to
do is supply some CSS to give the page a little pizzazz. Below you’ll find some
CSS already “baked” for you. Whenever you see the logo, you’re
seeing HTML and CSS that you should type in as-is. Trust us. You’ll learn how
the markup works later, after you’ve seen what it can do.

So, take a look at the CSS and then add it to your “index.html” file. Once
you’ve got it typed in, save your file.

Giving Starbuzz some style…

<html>
 <head>
 <title>Starbuzz Coffee</title>
 <style type="text/css">
 body {
 background-color: #d2b48c;
 margin-left: 20%;
 margin-right: 20%;
 border: 2px dotted black;
 padding: 10px 10px 10px 10px;
 font-family: sans-serif;
 }
 </style>
 </head>

 <body>
 <h1>Starbuzz Coffee Beverages</h1>

 <h2>House Blend, $1.49</h2>
 <p>A smooth, mild blend of coffees from Mexico, Bolivia and
 Guatemala.</p>

 <h2>Mocha Caffe Latte, $2.35</h2>
 <p>Espresso, steamed milk and chocolate syrup.</p>

 <h2>Cappuccino, $1.89</h2>
 <p>A mixture of espresso, steamed milk and milk foam.</p>

 <h2>Chai Tea, $1.85</h2>
 <p>A spicy drink made with black tea, spices, milk and honey.</p>
 </body>
</html>

CSS uses a syntax that
is totally different
from HTML.

Ready Bake
CSS

Ready
Bake

you are here 4 31

the language of the web

Now we have margins
around the content.

Cruisin’ with style…
It’s time for another test drive, so reload your “index.html” file again.
This time, you’ll see the Starbuzz web page has a whole new look.

We’ve got a black dotted border
around the content.

We’re using a
different font for
a cleaner look.

There’s now some
padding between the
content and the border
(on all sides).

Background color is now tan.

Margin

Whoa! Very nice. We’re
in business now!

 If you're using IE,
you might not see
the border.

Internet Explorer
does not display the

border around the body correctly.

Try loading the page in Firefox,

Chrome or Safari to see the border.

32 Chapter 1

looking more closely at css

background-color: #d2b48c;

margin-left: 20%;

margin-right: 20%;

border: 2px dotted black;

padding: 10px 10px 10px 10px;

font-family: sans-serif;

Even though you’ve just glanced at CSS, you’ve already begun to see
what it can do. Match each line in the style definition to what it does.

Defines the font to use for text.

Defines a border around the body that is
dotted and the color black.

Sets the left and right margins to take up
20% of the page each.

Sets the background color to tan.

Creates some padding around the body of
the page.

Q: CSS looks like a totally different
language than HTML. Why have two
languages? That’s just more for me to
learn, right?

A: You are quite right that HTML and
CSS are completely different languages,
but that is because they have very different
jobs. Just like you wouldn’t use English to
balance your checkbook, or math to write a
poem, you don’t use CSS to create structure
or HTML to create style because that’s not
what they were designed for. While this does
mean you need to learn two languages,

you’ll discover that because each language
is good at what it does, this is actually easier
than if you had to use one language to do
both jobs.

Q: #d2b48c doesn’t look like a color.
How is #d2b48c the color “tan”?

A: There are a few different ways to
specify colors with CSS. The most popular is
called a “hex code,” which is what #d2b48c
is. This really is a tan color. For now, just go
with it, and we’ll be showing you exactly how
#d2b48c is a color a little later.

Q: Why is there a “body” in front of
the CSS rules? What does that mean?

A: The “body” in the CSS means that all
the CSS between the “{” and “}” applies to
content within the HTML <body> element. So
when you set the font to sans-serif, you’re
saying that the default font within the body of
your page should be sans-serif.

We’ll go into a lot more detail about how
CSS works shortly, so keep reading. Soon,
you’ll see that you can be a lot more specific
about how you apply these rules, and by
doing so, you can create some pretty cool
designs.

you are here 4 33

the language of the web

Write the HTML for the “mission.html” page below, and then
add the new CSS.

Update your “mission.html” file to include the new CSS.

Once you’ve done that, reload “mission.html” in your browser.

Make sure your mission page looks like ours at the end of the
chapter.

1

2

3

4

Now that you’ve put a little style in the Starbuzz “index.html” page, go ahead and
update your “mission.html” page to have the same style.

34 Chapter 1

content and style

Greetings, CSS; I’m glad you’re here because I’ve
been wanting to clear up some confusion about us.

Really? What kind of confusion?

Lots of people think that my tags tell the browsers
how to display the content. It’s just not true! I’m all
about structure, not presentation.

Well, you can see how some people might get
confused; after all, it’s possible to use HTML
without CSS and still get a decent-looking page.

“Decent” might be overstating it a bit, don’t you
think? I mean, the way most browsers display
straight HTML looks kinda crappy. People need
to learn how powerful CSS is and how easily I can
give their web pages great style.

HTML CSS

Heck yeah—I don’t want people giving you credit
for my work!

Hey, I’m pretty powerful too. Having your content
structured is much more important than having it
look good. Style is so superficial; it’s the structure of
the content that matters.

Get real! Without me, web pages would be pretty
damn boring. Not only that, but take away the
ability to style pages and no one is going to take
your pages seriously. Everything is going to look
clumsy and unprofessional.

Whoa, what an ego! Well, I guess I shouldn’t expect
anything else from you—you’re just trying to make
a fashion statement with all that style you keep
talking about.

Tonight’s talk: HTML and CSS on content and style

you are here 4 35

the language of the web

Fashion statement? Good design and layout can
have a huge effect on how readable and usable
pages are. And you should be happy that my
flexible style rules allow designers to do all kinds
of interesting things with your elements without
messing up your structure.

Right. In fact, we’re totally different languages,
which is good because I wouldn’t want any of your
style designers messing with my structure elements.

Don’t worry, we’re living in separate universes.

Yeah, that is obvious to me any time I look at
CSS—talk about an alien language.

Millions of web writers would disagree with you.
I’ve got a nice clean syntax that fits right in with the
content.

Yeah, like HTML can be called a language? Who
has ever seen such a clunky thing with all those
tags?

Just take a look at CSS; it’s so elegant and
simple, no goofy angle brackets <around>
<everything>. <See> <I> <can><talk>
<just><like><Mr.><HTML><,><look><at>
<me><!>

Hey, ever heard of closing tags?

Just notice that no matter where you go, I’ve
got you surrounded by <style> tags. Good luck
escaping!

Ha! I’ll show you…because, guess what? I can
escape…

HTML CSS

Stay tuned!

36 Chapter 1

review of basic html and css

Not only is this one fine cup of
House Blend, but now we’ve got

a web page to tell all our customers about
our coffees. Excellent work. I’ve got some
bigger ideas for the future; in the meantime,
can you start thinking about how we are
going to get these pages on the Internet so
other people can see them?

 � HTML and CSS are the languages we use to create
web pages.

 � Web servers store and serve web pages, which are
created from HTML and CSS. Browsers retrieve
pages and render their content based on the HTML
and CSS.

 � HTML is an abbreviation for HyperText Markup
Language and is used to structure your web page.

 � CSS is an abbreviation for Cascading Style Sheets,
and is used to control the presentation of your
HTML.

 � Using HTML, we mark up content with tags to
provide structure. We call matching tags, and their
enclosed content, elements.

 � An element is composed of three parts: an opening
tag, content, and a closing tag. There are a few
elements, like , that are an exception to this
rule.

 � Opening tags can have attributes. We’ve seen one
already: type.

 � Closing tags have a “/” after the left angle bracket,
in front of the tag name, to distinguish them as
closing tags.

 � Your pages should always have an <html> element
along with a <head> element and a <body>
element.

 � Information about the web page goes into the
<head> element.

 � What you put into the <body> element is what you
see in the browser.

 � Most whitespace (tabs, returns, spaces) is ignored
by the browser, but you can use it to make your
HTML more readable (to you).

 � You can add CSS to an HTML web page by
putting the CSS rules inside the <style> element.
The <style> element should always be inside the
<head> element.

 � You specify the style characteristics of the elements
in your HTML using CSS.

you are here 4 37

the language of the web

It’s time to sit back and give your left brain something to do. It’s your
standard crossword; all of the solution words are from this chapter.

HTMLcross

1 2 3

4 5 6 7

8 9

10 11

12

13

14

15 16

17

18

Across
2. The "M" in HTML.
8. Tags can have these to provie

additional information.
10. Browsers ignore this.
12. You define presentation through

this tag.
13. Purpose of <p> element.
15. Two tags and content.
17. What you see in your page.
18. We emphasized Dance _____

Revolution

Down
1. There are six of these.
3. CSS is used when you need to

control this.
4. You markup content to provide this.
5. Appears at the top of the browser

for each page.
6. Style we wish we could have had
7. Company that launched your web

career.
9. Only type of style available.

11. Always separate these in HTML.
14. About your web page.
16. Opening and closing.

Across
2. The "M" in HTML.
8. Tags can have these to provide additional information.
10. Browsers ignore this.
12. You define presentation through this element.
13. Purpose of <p> element.
15. Two tags and content.
17. What you see in your page.
18. We emphasized Dance _________ Revolution.

Down
1. There are six of these.
3. CSS is used when you need to control this.
4. You mark up content to provide this.
5. Appears at the top of the browser for each page.
6. Style we wish we could have had.
7. Company that launched your web career.
9. Only type of style available.
11. Always separate these in HTML.
14. About your web page.
16. Opening and closing.

38 Chapter 1

exercise solutions

Go ahead and mark up the napkin (using your pencil) with any
structure you see, and add anything that is missing.

Thanks for giving us a hand
!

On the web page we just need

something simple (see below) that

includes the beverage nam
es, prices,

and descriptions.

House Blend, $1.49
A smooth, mild blend of coffees from

 Mexico, Bolivia

and Guatemala.

Mocha Cafe Latte, $2.35

Espresso, steamed milk and chocolate syrup.

Cappuccino, $1.89
A mixture of espresso, steamed milk and foam.

Chai Tea, $1.85
A spicy drink made with black tea, spices, milk and honey.

Not going to be part
of the web page

Starbuzz Coffe
e

St
ar

buzz Coffee
Starbuzz Coffee
Beverages

A subheading

Another subh
eading

More subhead
ings

Add a page h
eading

Paragraphs.Paragraphs.

you are here 4 39

the language of the web

Starbuzz Coffee Beverages

House Blend, $1.49

A smooth, mild blend of coffees from Mexico, Bolivia and
Guatemala.

Mocha Cafe Latte, $2.35

Espresso, steamed milk and chocolate syrup.

Cappuccino, $1.89

A mixture of espresso, steamed milk and foam.

Chai Tea, $1.85

A spicy drink made with black tea, spices, milk and honey.

<h1>
<h1>

<h1>

</h1>
</h1>

</h1>

<h2>

<h2>

<h2>

</h2>

</h2>

</h2>

<p>

<p>

<p>

</p>

</p>

</p>

Markup Magnets Solution
Your job was to add some structure to the text from the Starbuzz
napkin. Use the fridge magnets at the bottom of the page
to mark up the text so that you’ve indicated which parts are
headings, subheadings, and paragraph text. Here's our solution.

</h2><h2>

</p><p>

Leftover magnets

40 Chapter 1

exercise solutions

To provide all the

caffeine that you

need to power your
life.

 Just drink it.

Starbuzz Coffee’s

Mission

<html>

 <head>

 <title>Starbuzz Coffee's Mission</title>

 </head>

 <body>

 <h1>Starbuzz Coffee's Mission</h1>

 <p>To provide all the caffeine that you need to
power your life.</p>

 <p>Just drink it.</p>

 </body>

</html>

Here’s the HTML.

Here’s the HTML displayed in a browser.

you are here 4 41

the language of the web

<html>

 <head>

 <title>Starbuzz Coffee's Mission</title>

 <style type=“text/css”>
 body {
 background-color: #d2b48c;
 margin-left: 20%;
 margin-right: 20%;
 border: 2px dotted black;
 padding: 10px 10px 10px 10px;
 font-family: sans-serif;
 }
 </style>
 </head>

 <body>

 <h1>Starbuzz Coffee's Mission</h1>

 <p>To provide all the caffeine that you need to power
your life.</p>

 <p>Just drink it.</p>

 </body>

</html>

Here’s the CSS in the
mission page.

Now, the style matches
the main Starbuzz page.

42 Chapter 1

exercise solutions

background-color: #d2b48c;

margin-left: 20%;

margin-right: 20%;

border: 2px dotted black;

padding: 10px 10px 10px 10px;

font-family: sans-serif;

Even though you’ve just glanced at CSS, you’ve already seen the beginnings of
what it can do. Match each line in the style definition to what it does.

Defines the font to use for text.

Defines a border around the body
that is dotted and the color black.

Sets the left and right margins to
take up 20% of the page each.

Sets the background color to tan.

Creates some padding around the
body of the page.

H1 M2 A R K U P3

E S4 R T5 56 S7

A8 T T R I B U T E S I 0 T T9

D R S W10 H11 I T E S P A C E
I U S12 T Y L E E L K R X
N C N A E I B T
G T T D T U C
S U P13 A R A G R A P H S Z S

R H14 T N C Z S
E15 L E M E N T16 I D H

A A O B17 O D Y
D G N O

S D18 A N C E
Y

Across
2. The "M" in HTML. [MARKUP]
8. Tags can have these to provie

additional information.
[ATTRIBUTES]

10. Browsers ignore this.
[WHITESPACE]

12. You define presentation through
this tag. [STYLE]

13. Purpose of <p> element.
[PARAGRAPH]

15. Two tags and content. [ELEMENT]
17. What you see in your page. [BODY]

18. We emphasized Dance _____
Revolution [DANCE]

Down
1. There are six of these.

[HEADINGS]
3. CSS is used when you need to

control this. [PRESENTATION]
4. You markup content to provide this.

[STRUCTURE]
5. Appears at the top of the browser

for each page. [TITLE]
6. Style we wish we could have had

[50SKITSCH]
7. Company that launched your web

career. [STARBUZZ]
9. Only type of style available.

[TEXTCSS]
11. Always separate these in HTML.

[HEADANDBODY]
14. About your web page. [HEAD]
16. Opening and closing. [TAGS]

this is a new chapter 43

Did someone say “hypertext?” What’s that? Oh, only the entire

basis of the Web. In Chapter 1 we kicked the tires of HTML and found it to be a nice

markup language (the “ML” in HTML) for describing the structure of web pages. Now

we’re going to check out the “HT” in HTML, hypertext, which will let us break free of

a single page and link to other pages. Along the way we’re going to meet a powerful

new element, the <a> element, and learn how being “relative” is a groovy thing. So,

fasten your seat belts—you’re about to learn some hypertext.

Meeting the “HT” in HTML
2 going further with hypertext

You’re not listening.
I came here to meet

HyperTEXT!

Right, that’s me, they
call me Hyper Ted.

44 Chapter 2

improving the head first lounge

Remember the Head First Lounge? Great site, but wouldn’t it be nice if
customers could view a list of the refreshing elixirs? Even better, we should
give customers some real driving directions so they can find the place.

Head First Lounge, new and improved

The “detailed directions”
link leads to an HTML page
with driving directions.

Here’s the new
and improved
page.

We’ve added
links to two
new pages, one
for elixirs and
one for driving
directions.

The “elixirs” l
ink points to

 a page

with a full list
 of elixir sel

ections.

directions.html

you are here 4 45

going further with hypertext

A page listing some
refreshing and healthy
drinks. Feel free to grab
one before going on.

Creating the new and improved
lounge in three steps…

1 The first step is easy because we’ve already
created the “directions.html” and

“elixir.html” files for
you. You’ll find them
in the source files for
the book, which are
available at http://wickedlysmart.com/
hfhtmlcss.elixir.html

2 Next you’re going to edit the “lounge.html”
file and add in the HTML needed to link to

“directions.html” and “elixir.html”.

Let’s rework the original Head First Lounge
page so it links to the two new pages.

3 Last, you’ll give the pages a test drive and
try out your new links. When you get back,
we’ll sit down and look at how it all works.

Flip the page and let’s get started…

Ready
Bake

46 Chapter 2

looking at the source files

chapter2

Go ahead and grab the source files from http://wickedlysmart.com/hfhtmlcss.
Once you’ve downloaded them, look under the folder “chapter2/lounge” and you’ll
find “lounge.html”, “elixir.html”, and “directions.html” (and a bunch of image files).

Grab the source files1

Creating the new lounge

directions.html

lounge

blue.jpg

drinks.gif

red.jpg

green.jpg

lightblue.jpg

<html>
.
.
.
</html>

lounge.html

<html>
.
.
.
</html>

<html>
.
.
.
</html>

elixir.html

You’ll find the lounge directo
ry

here in your source files.

All the lounge files
are in this folder.

Here’s the current
 lounge

file, without links.

Two new files, already
written for you. Go
ahead and take a
peek—you already know
everything you need to
understand them.

And here’s all the
images needed
for our new and
improved lounge.

The Head First Lounge is already growing; do you think that keeping all the site’s files in a
single directory is a good way to organize the site? What would you do differently?

you are here 4 47

going further with hypertext

When you’re finished with the changes, save the file “lounge.html” and open it in
your browser. Here are a few things to try:

Save lounge.html and give it a test drive.

Open “lounge.html” in your editor. Add the new text and HTML that is highlighted below.
Go ahead and type this in; we’ll come back and see how it all works on the next page.

<html>

 <head>

 <title>Head First Lounge</title>

 </head>

 <body>

 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>

 Join us any evening for

 refreshing elixirs,

 conversation and maybe a game or two of

 Dance Dance Revolution.

 Wireless access is always provided;

 BYOWS (Bring your own web server).

 </p>

 <h2>Directions</h2>

 <p>

 You'll find us right in the center of downtown Webville.

 If you need help finding us, check out

 our detailed directions.

 Come join us!

 </p>

 </body>

</html>

Let’s add “New and Improved” to the heading.

Here’s where we add the HTML for the link to the
elixirs.

And here’s where we add the link to the directions, again using an
<a> element.

We need to add some text
here to point customers to
the new directions.

To create links, we use the
<a> element; we’ll take a
look at how this element
works in just a sec…

Edit lounge.html2

3

Click on the elixir link and the new elixir page will display.

Click on the browser’s back button and “lounge.html”
should be displayed again.

Click on the directions link and the new directions page
will display.

3

2

1

48 Chapter 2

how to create links

<a>elixirs

The content of the <a> element is the link text. In
the browser, the link text appears with an underline to
indicate you can click on it.

What did we do?

Behind
the Scenes

Let’s step through creating the HTML links. First, we need to put
the text we want for the link in an <a> element, like this:

<a>driving directions

elixirs

driving directions

Now that we have text for the link, we need to add some
HTML to tell the browser where the link points to:

The <a> element is used to create a link to another page.

The href attribute is
how you specify the
destination of the link.

For this link, the browser will
display the text “elixirs” that,
when clicked, will take the user
to the “elixir.html” page.

And for this link, the browser will display a
“driving directions” link that, when clicked, will
take the user to the “directions.html” page.

Okay, I’ve loaded the new
lounge page, clicked the links,
and everything worked. But I

want to make sure I understand
how the HTML works.

2

1

you are here 4 49

going further with hypertext

Use the <a> element to create a hypertext link to another web page.
The content of the <a> element becomes clickable in the web page.
The href attribute tells the browser the destination of the link.

elixirs

First, as the browser renders the page, if it encounters an <a>
element, it takes the content of the element and displays it
as a clickable link.

detailed directions

Both “elixirs” and “detailed
directions” are between the
opening and closing <a> tags,
so they end up being clickable
text in the web page.

What does the browser do?
Behind
the Scenes1

50 Chapter 2

how links work

elixirs

Next, when a user clicks on a link, the browser uses the “href”
attribute to determine the page the link points to.

detailed directions

The user clicks on either the
“elixirs” link or…

…on “detailed directions”.

When “detailed directions” is
clicked, the browser grabs the
value of the href attribute, in
this case “directions.html”…

…and loads “directions.html”.

If “elixirs” was clicked, the
browser grabs the href value
“elixir.html”…

…and displays the
“elixir.html” page.

Behind
the Scenes

2

you are here 4 51

going further with hypertext

Attributes give you a way to specify additional information about
an element. While we haven’t looked at attributes in detail, you’ve
already seen a few examples of them:

 <style type="text/css">

Let’s cook up an example to give you an even better feel for how
attributes work:

What if <car> were an element?

If <car> were an element, then you’d naturally want to write some
markup like this:

But this <car> element only gives a descriptive name for your
car—it doesn’t tell us the make, precise model, whether it is a
convertible, or a zillion other details we might want to know. So, if
<car> were really an element, we might use attributes like this:

Understanding attributes

<car make="Mini" model="Cooper" convertible="no">My Red Mini</car>

Better, right? Now this markup tells us a lot more information in
an easy-to-write, convenient form.

Safety
First

The type attribute specifies which style
language we’re using, in this case CSS.

The href attribute tells us the destination of a hyperlink.

The src attribute specifies the filename of the picture an img tag displays.

Attributes are always written the
same way: first comes the attribute

name, followed by an equals sign, and then the
attribute value surrounded in double quotes.
You may see some sloppy HTML on the Web
that leaves off the double quotes, but don’t get
lazy yourself. Being sloppy can cause you a lot
of problems down the road (as we’ll see later in
the book).

Great Movies

Great Movies

Do this (best practice)

Not this

attribute name
equals sign

double
quote

double quote
attribute value

No double quotes around the attribute value

<car>My Red Mini</car>

With no attributes, all we can supply
is a descriptive name for the car.

But with attributes, we can
customize the element with
all kinds of information.

52 Chapter 2

attributes and elements

…rhymes with
“space chef”.

The “href” attribute is
pronounced “h - ref”…

Q: Can I just make up new attributes for an HTML
element?

A: Web browsers only know about a predefined set of
attributes for each element. If you just made up attributes,
then browsers wouldn’t know what to do with them, and as
you’ll see later in the book, doing this will very likely get you
into trouble. When a browser recognizes an element or an
attribute, we like to say that it “supports” that element or
attribute. You should only use attributes that you know are
supported.

That said, for programming web applications (the subject
of Head First HTML5 Programming), HTML5 now supports
custom data attributes that allow you to make up custom
names for new attributes.

Q: Who decides what is “supported”?

A: There are standards committees that worry about the
elements and attributes of HTML. These committees are made
up of people with nothing better to do who generously give
their time and energy to make sure there’s a common HTML
roadmap that all organizations can use to implement their
browsers.

Q: How do I know what attributes and elements
are supported? Or can all attributes be applied to any
element?

A: Only certain attributes can be used with a given
element. Think about it this way: you wouldn’t use an attribute

“convertible” with the element <toaster>, would you? So, you
only want to use attributes that make sense and are supported
by the element.

You’re going to be learning which attributes are supported by
which elements as you make your way through the book. After
you’ve finished the book, there are lots of great references
you can use to refresh your memory, such as HTML & XHTML:
The Definitive Guide (O’Reilly).

you are here 4 53

going further with hypertext

Head First: Welcome, href. It’s certainly a pleasure to interview as big an attribute
as you.

href: Thanks. It’s good to be here and get away from all the linking; it can wear an
attribute out. Every time someone clicks on a link, guess who gets to tell the browser
where to go next? That would be me.

Head First: We’re glad you could work us into your busy schedule. Why don’t you
take us back to the beginning…What does it mean to be an attribute?

href: Sure. Well, attributes are used to customize an element. It’s easy to wrap some
<a> tags around a piece of content, like “Sign up now!”—we do it like this: <a>Sign
up now!—but without me, the href attribute, you have no way to tell the <a>
element the destination of the link.

Head First: Got it so far…

href: …but with an attribute you can provide additional information about the
element. In my case, that’s where the link points to:
Sign up now!. This says that the <a> element,
which is labeled “Sign up now!”, links to the “signup.html” page. Now, there are lots
of other attributes in the world, but I’m the one you use with the <a> element to tell it
where it points to.

Head First: Nice. Now, I have to ask, and I hope you aren’t offended, but what is
with the name? href ? What’s with that?

href: It’s an old Internet family name. It means “hypertext reference,” but all my
friends just call me “href ” for short.

Head First: Which is?

href: A hypertext reference is just another name for a resource that is on the Internet
or your computer. Usually the resource is a web page, but I can also point to PDF
documents…all kinds of things.

Head First: Interesting. All our readers have seen so far are links to their own pages;
how do we link to other pages and resources on the Web?

href: Hey, I gotta get back to work, the whole Web is getting gunked up without me.
Besides, isn’t it your job to teach them this stuff ?

Head First: Okay, okay, yes, we’re getting to that in a bit…thanks for joining us, href.

This week’s interview:
Confessions of the href attribute

Attributes Exposed

54 Chapter 2

linking back to the main page

You’ve created links to go from “lounge.html” to “elixir.html” and “directions.html”; now we’re
going to go back the other way. Below you’ll find the HTML for “elixir.html”. Add a link with the
label “Back to the Lounge” at the bottom of the elixir page that points back to “lounge.html”.

<html>
 <head>
 <title>Head First Lounge Elixirs</title>
 </head>
 <body>
 <h1>Our Elixirs</h1>

 <h2>Green Tea Cooler</h2>
 <p>

 Chock full of vitamins and minerals, this elixir
 combines the healthful benefits of green tea with
 a twist of chamomile blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p>

 Combining raspberry juice with lemon grass,
 citrus peel and rosehips, this icy drink
 will make your mind feel clear and crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p>

 Blueberries and cherry essence mixed into a base
 of elderflower herb tea will put you in a relaxed
 state of bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>

 Wake up to the flavors of cranberry and hibiscus
 in this vitamin C rich elixir.
 </p>

 </body>
</html>

When you are done, go ahead and do the same with “directions.html” as well.

Your new
HTML goes
here.

you are here 4 55

going further with hypertext

Label Destination What you write in HTML

Hot or Not?

Eye Candy

Resume cv.html

See my mini mini-cooper.html

candy.html

 let's play

We need some help constructing and deconstructing <a> elements. Given your new
knowledge of the <a> element, we’re hoping you can help. In each row below, you’ll find some
combination of the label, destination, and the complete <a> element. Fill in any information
that is missing. The first row is done for you.

Hot or Not? hot.html

Q: I’ve seen many pages where I can click on an image rather
than text. Can I use the <a> element for that?

A: Yes, if you put an element between the <a> tags, then
your image will be clickable just like text. We’re not going to talk
about images in depth for a few chapters, but they work just fine as
links.

Q: So I can put anything between the <a> tags and it will be
clickable? Like, say, a paragraph?

A: You can indeed put a <p> element inside an <a> element to
link an entire paragraph. You’ll mostly be using text and images (or
both) within the <a> element, but if you need to link a <p> or a <h1>
element, you can. What tags will go inside other tags is a whole other
topic, but don’t worry; we’ll get there soon enough.

56 Chapter 2

organizing your site with folders

Getting organized
Before you start creating more HTML pages, it’s time to get
things organized. So far, we’ve been putting all our files and
images in one folder. You’ll find that even for modestly sized
websites, things are much more manageable if you organize your
web pages, graphics, and other resources into a set of folders.
Here’s what we’ve got now:

directions.html

lounge

blue.jpg

drinks.gif

red.jpg

green.jpg

lightblue.jpg

<html>...</html>

lounge.html

<html>...</html>

<html>...</html>

elixir.html

And here are all the images. See, this is
getting sorta cluttered already, and we only
have three pages and a few graphics. Let’s
do something about it….

We’ve got a top-level folder
called “lounge” that holds all

our files in the site.

This is often referred to as the “root” folder of
the site, which means it is the top-level folder
that contains the entire site.

Here are the
three HTML
files: for the
lounge, the
elixirs page,
and the
directions.

Your work on the Head
First Lounge has really paid

off. With those enticing elixirs and directions,
lots of people are frequenting the place and
visiting the website. Now we’ve got plans for
expanding the lounge’s online content in all

sorts of directions.

you are here 4 57

going further with hypertext

Q: Since you have a folder for images,
why not have another one called “html”
and put all the HTML in that folder?

A: You could. There aren’t any “correct”
ways to organize your files; rather, you
want to organize them in a way that works
best for you and your users. As with most
design decisions, you want to choose an
organization scheme that is flexible enough
to grow, while keeping things as simple as
you can.

Q: Or why not put an images folder
in each other folder, like “about” and

“beverages”?

A: Again, we could have. We expect that
some of the images will be reused among
several pages, so we put images in a folder
at the root (the top level) to keep them all
together. If you have a site that needs lots
of images in different parts of the site, you
might want each branch to have its own
image folder.

Q: “Each branch”?

A: You can understand the way folders
are described by looking at
them as upside down
trees. At the top is
the root and each
path down to a file
or folder is a branch.

Organizing the lounge…
Let’s give the lounge site some meaningful organization now.
Keep in mind there are lots of ways to organize any site; we’re
going to start simple and create a couple of folders for pages.
We’ll also group all those images into one place.

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Our root folder is still th
e

“lounge” folder.

We’re going to leave the main “lounge.html” page in the “lounge” folder.

Let’s create a folder to hold pages about the lounge, like the directions. We could also add new pages here about the management, events, and so on.

We’ll also create a folder to hold
pages about the lounge’s beverages.
Right now that’s just the elixirs, but
we’ll be adding more soon.

And let’s group
all images into
one folder.

58 Chapter 2

reorganizing and broken links

Technical difficulties
It looks like we’ve got a few problems
with the lounge page after moving
things around.

Now you need to create the file and folder structure shown on the previous page. Here’s
exactly what you need to do:

 Locate your “lounge” folder and create three new subfolders
named “about”, “beverages”, and “images”.

	 Move	the	file	“directions.html”	into	the	“about”	folder.
	 Move	the	file	“elixir.html”	into	the	“beverages”	folder.
 Move all the images into the “images” folder.
	 Finally,	load	your	“lounge.html”	file	and	try	out	the	links.	

Compare with how ours worked below.

4

3

2

1

5

We’ve got an image that isn’t displaying. We usually call this a “broken image.”

And, when you click on “elixirs” (or “detailed
directions”) things get much worse: we get an
error saying the page can’t be found.

Some browsers display
this error as a web page
rather than a dialog box.

Exercise

you are here 4 59

going further with hypertext

So far you’ve used href values that
point to pages in the same folder. Sites
are usually a little more complicated,
though, and you need to be able to
point to pages that are in other folders.

To do that, you trace the path from
your page to the destination file. That
might mean going down a folder or two,
or up a folder or two, but either way we
end up with a relative path that we can
put in the href.

Right. We need to tell the
browser the new location
of the pages.

I think the problem is that the
browser thinks the files are still in the
same folder as “lounge.html”. We need to

change the links so they point to the files in
their new folders.

60 Chapter 2

working with paths

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images

drinks.gif

red.jpg

Start here…

…and find a
path to here.

elixirs

Planning your paths…
What do you do when you’re planning that vacation
in the family truckster? You get out a map and
start at your current location, and then trace a path
to the destination. The directions themselves are
relative to your location—if you were in another city,
they’d be different directions, right?

To figure out a relative path for your links, it’s the
same deal: you start from the page that has the link,
and then you trace a path through your folders until
you find the file you need to point to.

Let’s work through a couple of relative paths (and
fix the lounge at the same time).

Okay, you’d
really go to
Google Maps,
but work
with us here!

Linking down into a subfolder

Linking from “lounge.html” to “elixir.html”.
We need to fix the “elixirs” link in the “lounge.html” page. Here’s what the
<a> element looks like now:

Identify the source and the destination.
When we reorganized the lounge, we left “lounge.html” in the “lounge” folder, and
we put “elixir.html” in the “beverages” folder, which is a subfolder of “lounge”.

Right now we’re just using the
filename “elixir.html”, which tells
the browser to look in the same
folder as “lounge.html”.

1

2

There are other kinds of paths too. We’ll get to those in later chapters.

you are here 4 61

going further with hypertext

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images

drinks.gif

red.jpg

Trace a path from the source to the destination.
Let’s trace the path. To get from the “lounge.html” file to “elixir.html”, we need to go
into the “beverages” folder first, and then we’ll find “elixir.html” in that folder.

3

First, we need to
go down into the
“beverages” folder.

And “elixir.html” is
directly in that folder.

Create an href to represent the path we traced.
Now that we know the path, we need to get it into a format the browser
understands. Here’s how you write the path:

4

elixirs

beverages / elixir.html

First, we go into the
beverages folder.

Finally, we have the
filename.

Separate all parts of
the path with a “/”.

Putting it all together…

We put the relative path into the href value. Now when the link is clicked, the browser will look for the “elixir.html” file in the “beverages” folder.

62 Chapter 2

a little practice with paths

 detailed directions

YOUR ANSWER HERE

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images

drinks.gif

red.jpg

Your turn: trace the relative path from “lounge.html” to “directions.html”. When you’ve
discovered it, complete the <a> element below. Check your answer in the back of the
chapter, and then go ahead and change both <a> elements in “lounge.html.”

you are here 4 63

going further with hypertext

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images

drinks.gif

red.jpg

Start here…

…and find a
path to here.

Back to the Lounge

Going the other way; linking up into a “parent” folder

Linking from “directions.html” to “lounge.html”.
Now we need to fix those “Back to the Lounge” links. Here’s what the <a>
element looks like in the “directions.html” file:

Identify the source and the destination.
Let’s take a look at the
source and destination.
The source is now
the “directions.html”
file, which is down in
the “about” folder. The
destination is the

“lounge.html” file that sits
above the “about” folder,
where “directions.html”
is located.

Right now, we’re just
using the filename
“lounge.html”, which tells
the browser to look in
the same folder as
“directions.html”. That’s
not going to work.

1

2

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images

drinks.gif

red.jpg

Trace a path from the source to the destination.
Let’s trace the path.
To get from the

“directions.html” file to
“lounge.html”, we need to
go up one folder into the

“lounge” folder, and then
we’ll find “lounge.html”
in that folder.

3

First, we need to
go UP into the
“lounge” folder…

…and “lounge.html” is
directly in that folder.

64 Chapter 2

building the href

Create an href to represent the path we traced.
We’re almost there. Now that you know the path, you need to get it
into a format the browser understands. Let’s work through this:

4

Back to the Lounge

.. / lounge.html

First, you need to go

up one folder. How do

you do that? With a “..”.

That’s right, two periods.

Go with it, we’ll explain

in a sec.

Finally, you have the
filename.

Separate all parts of
the path with a “/”.

Putting it all together…

Now when you click on the link, the browser will look for the “lounge.html” file in the folder above.

Pronounce “..” as “dot dot”.

Up, down,
housewares,

lingerie?

Dot dot

you are here 4 65

going further with hypertext

Q: What’s a parent folder? If I have a
folder “apples” inside a folder “fruit”, is

“fruit” the parent of “apples”?

A: Exactly. Folders (you might have heard
these called directories) are often described
in terms of family relationships. For instance,
using your example, “fruit” is the parent of

“apples”, and “apples” is the child of “fruit”.
If you had another folder “pears” that was
a child of “fruit”, it would be a sibling of

“apples.” Just think of a family tree.

Q: Okay, parent makes sense, but
what is “..”?

A: When you need to tell the browser that
the file you’re linking to is in the parent folder,
you use “..” to mean “move UP to the parent
folder.” In other words, it’s browser-speak
for parent.

In our example, we wanted to link from

“directions.html”, which is in the “about” folder,
to “lounge.html”, which is in the “lounge”
folder, the parent of “about”. So we had to
tell the browser to look UP one folder, and “..”
is the way we tell the browser to go UP.

Q: What do you do if you need to go
up two folders instead of just one?

A: You can use “..” for each parent folder
you want to go up. Each time you use “..”
you’re going up by one parent folder. So, if
you want to go up two folders, you’d type

“../..”. You still have to separate each part with
the “/”, so don’t forget to do that (the browser
won’t know what “….” means!).

Q: Once I’m up two folders, how do I
tell the browser where to find the file?

A: You combine the “../..” with the
filename. So, if you’re linking to a file called

“fruit.html” in a folder that’s two folders up,
you’d write “../../fruit.html”. You might expect
that we’d call “../..” the “grandparent” folder,
but we don’t usually talk about them that way,
and instead say, “the parent of the parent
folder,” or “../..” for short.

Q: Is there a limit to how far up I can
go?

A: You can go up until you’re at the root
of your website. In our example, the root was
the “lounge” folder. So, you could only go up
as far as “lounge”.

Q: What about in the other direction—
is there a limit to how many folders I can
go down?

A: Well, you can only go down as many
folders as you have created. If you create
folders that are 10 deep, then you can write
a path that takes you down 10 folders. But
we don’t recommend that—when you have
that many folder levels, it probably means
your website organization is too complicated!

In addition, some browsers impose a limit
on the number of characters you can have
in a path. The spec advises caution above
255 characters, although modern browsers
support longer lengths. If you have a large
site, however, it’s something to be aware of.

Q: My operating system uses “\” as
a separator; shouldn’t I be using that
instead of “/”?

A: No; in web pages you always use “/”
(forward slash). Don’t use “\” (backslash).
Various operating systems use different file
separators (for instance, Windows uses “\”
instead of “/”) but when it comes to the Web,
we pick a common separator and all stick to
it. So, whether you’re using Mac, Windows,
Linux, or something else, always use “/” in
the paths in your HTML.

Your turn: trace the relative path from “elixir.html” to “lounge.html” from the “Back to the
Lounge” link. How does it differ from the same link in the “directions.html” file?

Answer: It doesn’t; it is exactly the same.

66 Chapter 2

relative paths and images

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images

drinks.gif

red.jpg

Start here…

…and find a
path to here.

You’ve almost got the lounge back in working order; all you
need to do now is fix those images that aren’t displaying.

We haven’t looked at the element in detail yet (we will
in a couple of chapters), but all you need to know for now is
that the element’s src attribute takes a relative path,
just like the href attribute.

Here’s the image element from the “lounge.html” file:

Here’s the relative path, which tells the
browser where the image is located. We
specify this just like we do with the href
attribute in the <a> element.

Fixing those broken images…

Finding the path from “lounge.html” to “drinks.gif”
To find the path, we need to go from the “lounge.html” file to
where the images are located, in the “images” folder.

So when we put (1) and (2) together, our path looks like “images/drinks.gif ”, or:

GOAL: we’re in the lounge

folder and we need to get

down into the images folder.

(1) Go down into
the images folder.

(2) There’s our
file, “drinks.gif”.

Hey, it’s nice you fixed all
those links, but didn’t you forget

something? All our images are broken!
Don’t leave us hanging—we’ve got a

business to run.

you are here 4 67

going further with hypertext

The elixirs page contains images of several drinks: “red.jpg”,
“green.jpg”, “blue.jpg”, and so on. Let’s figure out the path to
“red.jpg” and then the rest will have a similar path because they
are all in the same folder:

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images

drinks.gif

red.jpg

Start here…

…and find a
path to here.

Finding the path from “elixir.html” to “red.jpg”

So putting (1) , (2), and (3) together, we get:

GOAL: we’re in the
beverages folder and we
need to get over to the
images folder.

(1) So we go up to the parent
folder, “lounge”. Remember
this will be written as “..” in
the path.

(2) And then down into the “images” folder.

(3) Finally, we find “red.jpg” .

.. / images / red.jpg

Up to the
parent folder

“/” in between “/” in between
Down into
the “images”
folder

And the filename itself

68 Chapter 2

fixing images with relative links

That covers all the links we broke when we reorganized the lounge, although you still need to
fix the images in your “lounge.html” and “elixir.html” files. Here’s exactly what you need to do:

 In “lounge.html”, update the image src attribute
to have the value “images/drinks.gif”.

 In “elixir.html”, update the image src attribute so
that “../images/” comes before each image name.

	 Save	both	files	and	load	“lounge.html”	in	your	
browser. You’ll now be able to navigate between
all the pages and view the images.

3

2

1

P.S. If you’re having any trouble, the folder
“chapter2/completelounge” contains a working version of
the lounge. Double-check your work against it.

And then we
can take the site to

the next level!

You did it! Now
we’ve got organization and

all our links are working. Time
to celebrate. Join us and have a

green tea cooler.

you are here 4 69

going further with hypertext

 � When you want to link from one page
to another, use the <a> element.

 � The href attribute of the <a> element
specifies the destination of the link.

 � The content of the <a> element is the
label for the link. The label is what
you see on the web page. By default,
it’s underlined to indicate you can
click on it.

 � You can use words or an image as
the label for a link.

 � When you click on a link, the browser
loads the web page that’s specified
in the href attribute.

 � You can link to files in the same
folder, or files in other folders.

 � A relative path is a link that points to
other files on your website relative
to the web page you’re linking from.
Just like on a map, the destination is
relative to the starting point.

 � Use “..” to link to a file that’s one
folder above the file you’re linking
from.

 � “..” means “parent folder.”

 � Remember to separate the parts of
your path with the “/” (forward slash)
character.

 � When your path to an image is
incorrect, you’ll see a broken image
on your web page.

 � Don’t use spaces in the names you
choose for files and folders for your
website.

 � It’s a good idea to organize your
website files early on in the process
of building your site, so you don’t
have to change a bunch of paths
later when the website grows.

 � There are many ways to organize a
website; how you do it is up to you.

70 Chapter 2

practicing paths

Here’s your chance to put your relativity skills to the test. We’ve got a website for
the top 100 albums in a folder named “music”. In this folder you’ll find HTML files,
other folders, and images. Your challenge is to find the relative paths we need so
we can link from our web pages to other web pages and files.
On this page, you’ll see the website structure; on the next page, you’ll find the
tasks to test your skills. For each source file and destination file, it’s your job
to make the correct relative path. If you succeed, you will truly be champion of
relative paths.
Good luck!

The Relativity Grand Challenge

<html>
.
.
.
</html>

pinkfloyd.html darkside.gif

logo.gif

<html>
.
.
.
</html>

top100.html

<html>
.
.
.
</html>

genres.html

floyd.gif

music

 rock

 genres images

 cdcovers artists
<html>
.
.
.
</html>

coldplay.html
xandy.gif chris.gif

Feel free to draw right

on this website picture
to figure out the pat

hs.

you are here 4 71

going further with hypertext

Round One
<html>
.
.
.
<html>

top100.html logo.gif

Round Two
<html>
.
.
.
<html>

genres.html logo.gif

Bonus Round
<html>
.
.
.
<html>

coldplay.html chris.gif

“top100.html” is in the
“music” folder, so to get

to “genres.html”, we had

to go down into the
“genres” folder.

It’s time for the competition to begin.

Ready…set…write!

<html>
.
.
.
<html>

top100.html

Round Three

pinkfloyd.html

<html>
.
.
.
<html>

Example
<html>
.
.
.
<html>

top100.html

genres/genres.html

genres.html

<html>
.
.
.
<html>

72 Chapter 2

some fun for your left brain

1 2

3

4 5

6 7 8

9 10

11 12

13 14 15

16

17

Across

1. ../myfiles/index.html is this kind of link.
3. Another name for a folder.
6. Flavor of blue drink.
9. what href stands for.
13. Everything between the <a> and is this.
16. Can go in an <a> element, just like text.
17. Pronounced "..".

Down

2. href and src are two of these.
4. Hardest working attribute on the web.
5. Rhymes with href.
7. Top folder of your site.
8. The "H " in HTML.
10. Healthy drink.
11. A folder at the same level.
12. Use .. to reach this kind of directory.
14. Text between the <a> tags acts as a ______.
15. A subfolder is also called this.

T

HTMLcross
How does a crossword help you learn HTML? Well, all the words are HTML-
related and from this chapter. In addition, the clues provide the mental twist and
turns that will help you burn alternative routes to HTML right into your brain!

Across
1. “../myfiles/index.html” is this kind of link.
3. Another name for a folder.
6. Flavor of blue drink.
9. What href stands for.
13. Everything between the <a> and is this.
16. Can go in an <a> element, just like text.
17. Pronounced “..”.

Down
2. href and src are two of these.
4. Hardest-working attribute on the Web.
5. Rhymes with href.
7. Top folder of your site.
8. The “HT” in HTML.
10. Healthy drink.
11. A folder at the same level.
12. Use .. to reach this kind of directory.
14. Text between the <a> tags acts as a ________.
15. A subfolder is also called this.

you are here 4 73

going further with hypertext

<html>
 <head>
 <title>Head First Lounge Elixirs</title>
 </head>
 <body>
 <h1>Our Elixirs</h1>

 <h2>Green Tea Cooler</h2>
 <p>

 Chock full of vitamins and minerals, this elixir
 combines the healthful benefits of green tea with
 a twist of chamomile blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p>

 Combining raspberry juice with lemon grass,
 citrus peel and rosehips, this icy drink
 will make your mind feel clear and crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p>

 Blueberries and cherry essence mixed into a base
 of elderflower herb tea will put you in a relaxed
 state of bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>

 Wake up to the flavors of cranberry and hibiscus
 in this vitamin C rich elixir.
 </p>
 <p>
 Back to the Lounge
 </p>
 </body>
</html>

Here’s the new <a> element pointing
back to the lounge.

We put the link inside its own paragraph
to keep things tidy. We’ll talk more
about this in the next chapter.

You needed to add a link with the label “Back to the Lounge” at the bottom of the elixir page that
points back to “lounge.html”. Here’s our solution.

74 Chapter 2

exercise solutions

Exercise solutions

Label Destination Element

Hot or Not?

Eye Candy

Resume cv.html

See my mini mini-cooper.html

candy.html

 let's play

Resume

hot.htmlHot or Not?

candy.htmlEye Candy

See my mini

let’s playmillionaire.html

R
1

E L A
2

T I V E

T

D
3

I R E C T O R Y

R

H
4

I S
5

R
6

A S P B E R
7

R Y P H
8

E U O A Y

F T O C P

H
9

Y P E R T E X T R E F E
10

R E N C E

S C L R

S
11

P
12

H I T

I C
13

L
14

I C
15

K A B L E X E

B A H R F I X

L B I E R T

I
16

M A G E L N

N L D
17

O T D O T

G

Across

1. ../myfiles/index.html is this kind of link.
[relative]
3. Another name for a folder. [directory]
6. Flavor of blue drink. [raspberry]
9. what href stands for. [hypertextreference]
13. Everything between the <a> and is this.
[clickable]
16. Can go in an <a> element, just like text. [image]
17. Pronounced "..". [dotdot]

Down

2. href and src are two of these. [attributes]
4. Hardest working attribute on the web. [href]
5. Rhymes with href. [spacechef]
7. Top folder of your site. [root]
8. The "H" in HTML. [hypertext]
10. Healthy drink. [elixir]
11. A folder at the same level. [sibling]
12. Use .. to reach this kind of directory. [parent]
14. Text between the <a> tags acts as a ______.
[label]
15. A subfolder is also called this. [child]

you are here 4 75

going further with hypertext

 detailed directions

YOUR ANSWER HERE

“about”

“directions.html”

about/directions.html

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images

drinks.gif

red.jpg

Trace the relative path from “lounge.html” to “directions.html”. When you’ve
discovered it, complete the <a> element below.
Here’s the solution. Did you change both <a> elements in “lounge.html”?

76 Chapter 2

exercise solutions

The Relativity Grand Challenge Solution

Round One
<html>
.
.
.
<html>

top100.html logo.gif

images/logo.gif

pinkfloyd.html

<html>
.
.
.
<html>

top100.html

Round Three
genres/rock/pinkfloyd.html <html>

.

.

.
<html>

Round Two
<html>
.
.
.
<html>

genres.html logo.gif

../images/logo.gif

<html>
.
.
.
<html>

Bonus Round

coldplay.html chris.gif

../../images/artists/chris.gif

top100.html is in the
music folder, so to
get to logo.gif, we had
to go down into the
images folder.

genres.html is down in
the genres directory, so
to get to logo.gif, we
first had to go up to
music, and then down into
the images folder.

From top100.html, we go

down into genres, t
hen

down into rock, an
d find

pinkfloyd.html.

This was a tricky one. From
coldplay.html, which is down in
the rock folder, we had to go
up TWO folders to get to music,
and then go down into images,
and finally artists, to find the
image chris.gif. Whew!

this is a new chapter 77

Web Page Construction
3 building blocks

I was told I’d actually be creating web pages in this book?
You’ve certainly learned a lot already: tags, elements, links, paths…but it’s all for

nothing if you don’t create some killer web pages with that knowledge. In this chapter

we’re going to ramp up construction: you’re going to take a web page from conception

to blueprint, pour the foundation, build it, and even put on some finishing touches. All

you need is your hard hat and your toolbelt, as we’ll be adding some new tools and

giving you some insider knowledge that would make Tim “The Toolman” Taylor proud.

We better find some
hard hats, Betty. It’s a real

construction zone around here, and
these web pages are going up fast!

78 Chapter 3

meet tony and his segway

Tony

Tony’s Segway

Make sure you read through Tony’s adventures—they’ll
come in handy throughout the chapter.

Tony’s journal

My first day of
the trip! I can’

t believe I

finally got ever
ything packed a

nd ready to

go. Because I’m on a Segway, I wasn’t able

to bring a whole lot with me: cell phone,

iPod, digital ca
mera, and a prot

ein bar.

Just the essentia
ls. As Lao Tzu would have

said, “A journey of a t
housand miles begins

with one step Se
gway.”

June 2, 2012

I saw some Burma Shave style s
igns on the sid

e

of the road to
day: “Passing c

ars, When you

can’t see, May get you, A glimpse, Of eternity.”

I definitely won’t be passing
 any cars.

July 14, 2012

Segway’n USA

Documenting my trip around t
he US on

my very own Segway!

August 20, 2012

Well I made it 1200 miles already, a
nd I

passed throug
h some interesting

places on

the way: Walla Walla, WA, Magic City, ID,

Bountiful, UT, Last Chance, CO, Why, AZ

and Truth or Consequences, N
M.

What better way to enjoy my new
Segway than to hit the open road? I’m
riding it across the entire USA and I’ve been
documenting my travels in my journal. What I
really need to do is get this in a web page so
my friends and family can see it.

you are here 4 79

building blocks

From journal to website, at 12 mph
Tony’s got his hands full driving across the United States on his Segway.
Why don’t you give him a hand and create a web page for him?

Here’s what you’re going to do:

1 First, you’re going to create a rough sketch of the journal that is the basis for
your page design.

2 Next, you’ll use the basic building blocks of HTML (<h1>, <h2>, <h3>, <p>, and so on)
to translate your sketch into an outline (or blueprint) for the HTML page.

3 Once you have the outline, then you’re going to translate it into real HTML.

4 Finally, with the basic page done, you’ll add some enhancements and meet
some new HTML elements along the way.

Take a close look at Tony’s journal
and think about how you’d present the
same information in a web page.
Draw a picture of that page on the right.
No need to get too fancy; you’re just
creating a rough sketch. Assume all his
journal entries will be on one page.
Things to think about:

 � Think of the page in terms of large
structural elements: headings,
paragraphs, images, and so on.

 � Are there ways his journal might be
changed to be more appropriate for
the Web?

STOP! Do this exercise before turning the page.

The Segway’s top speed.

Your sketch
goes here.

recommended

80 Chapter 3

making a rough sketch

My first day of the trip! I can’t believe
finally got everything packed and ready to go.
Because I’m on a Segway, I wasn’t able to bring
a whole lot with me: cell phone, iPod, digital
camera, and a protein bar. Just the essentials.
As Lao Tzu would have said, “A journey of a
thousand miles begins with one Segway.”

June 2, 2012

I saw some Burma Shave style signs on the side
of the road today: “Passing cars, When you
can’t see, May get you, A glimpse, Of eternity.”
I definitely won’t be passing any cars.

July 14, 2012

Segway’n USA
Documenting my trip around the US on
my very own Segway!

August 20, 2012

Well I made it 1200 miles already, and I passed
through some interesting places on the way:
Walla Walla, WA, Magic City, ID, Bountiful,
UT, Last Chance, CO, Why, AZ and Truth or
Consequences, NM.

Tony’s journal looks a lot like a web page; all we need to do to
create the design sketch is to get all his entries on one page and
map out the general organization. It looks like, for each day
that Tony creates an entry, he has a date heading, an optional
picture, and a description of what happened that day. Let’s
look at the sketch…

Tony gave his journal a title, “Segway’n USA,” so let’s get that right at the top as a heading.

He also gave his journal a
description. We’ll capture
that here as a small
paragraph at the top.

Each day, Tony creates an entry that
includes the date, usually a picture, and
a description of the day’s adventures.
So, that’s a heading, an image, and
another paragraph of text.

The rough design sketch

Sometimes he doesn’t include a picture. In this
entry, he just has a heading (the date) and a
description of the day’s events.

Unlike Tony’s paper journal, our page length isn
’t

limited, so we can fit many entries on one web
page. His friends and family can just use the
scroll bar to scroll through his entries…

However, notice that we reversed the order of

the journal entries from newest to oldest. That

way, the most recent entries appear at the top

where users can see them without scrolling.

The third entry should look just
like the first one: a heading, an
image, and a paragraph.

you are here 4 81

building blocks

From a sketch to an outline
Now that you’ve got a sketch of the page, you can take
each section and draw something that looks more like
an outline or blueprint for the HTML page…

All you need to do now is figure out which HTML
element maps to each content area, and then you can
start writing the HTML.

Here we’ve taken each area of the
sketch and created a corresponding
block in our blueprint.

EXERCISE: Web Construction
You’ve already figured out the major
architectural areas of the page; now you just
need to nail down the building materials. Use
the elements below to label each area. You
won’t use them all, so don’t worry if you have
some building materials left over. And don’t
forget to wear your hard hat.

h1

h1
h1
h1

h2
h2h2

h3
h3
h3

img
imgimg

h4
h4
h4

a
a

a

p
p
p

p

82 Chapter 3

turning the outline into a web page

From the outline to a web page
You’re almost there. You’ve created an outline of
Tony’s web page. Now all you need to do is create
the corresponding HTML to represent the page
and fill in Tony’s text.

Before you begin, remember that every web page
needs to start with the <html> element and include
the <head> and <body> elements.

h1

h2

h2

h2

img

img

p

p

p

p

Now that you know
what “building blocks” make

up each part of the page, you
can translate this blueprint

directly into HTML.

you are here 4 83

building blocks

<html>

 <head>
 <title>My Trip Around the USA on a Segway</title>
 </head>
 <body>

 <h1>Segway'n USA</h1>
 <p>
 Documenting my trip around the US on my very own Segway!
 </p>

 <h2>August 20, 2012</h2>

 <p>
 Well I made it 1200 miles already, and I passed
 through some interesting places on the way: Walla Walla,
 WA, Magic City, ID, Bountiful, UT, Last Chance, CO,
 Why, AZ and Truth or Consequences, NM.
 </p>

 <h2>July 14, 2012</h2>
 <p>
 I saw some Burma Shave style signs on the side of the
 road today: "Passing cars, When you can't see, May get
 you, A glimpse, Of eternity." I definitely won't be passing
 any cars.
 </p>

 <h2>June 2, 2012</h2>

 <p>
 My first day of the trip! I can't believe I finally got
 everything packed and ready to go. Because I'm on a Segway,
 I wasn't able to bring a whole lot with me: cell phone, iPod,
 digital camera, and a protein bar. Just the essentials. As
 Lao Tzu would have said, "A journey of a thousand miles begins
 with one Segway."
 </p>

 </body>
</html>

Don’t forget, you always need the <html>,

<head>, <title>, and <body>
 elements.

We’re using the title of the journal as
the title of the web page.

Here’s the heading and
description of Tony’s jo

urnal.

Here’s Tony’s most
recent entry.

And at the bottom
,

Tony’s first entry
,

with the image
“segway1.jpg”.

Last, but not least, don’t forget to
close your <body> and <html> elements.

Go ahead and type this in. Save your file to the “chapter3/journal” folder as “journal.html”. You’ll find the images
“segway1.jpg” and “segway2.jpg” already in the “images” folder. When you’re done, give this page a test drive.

Here’s his second
entry, which doesn’t
have an image.

heading
image
description

84 Chapter 3

test driving tony's page

Test driving Tony’s web page

Look how well this page has
 come

together. You’ve
 put everything

in

Tony’s journal in
to a readable an

d

well-structured web page.

Tony’s calling in
from the road…

My first day of
the trip! I can’

t believe I

finally got ever
ything packed a

nd ready to go
.

Because I’m on a Segway, I wasn’t able to br
ing

a whole lot with me: cell phone, iP
od, digital

camera, and a prot
ein bar. Just the essentia

ls.

As Lao Tzu would have said,
“A journey of a

thousand miles begins with one step Se
gway.”

June 2, 2012

I saw some Burma Shave style s
igns on the sid

e of

the road today
: “Passing cars,

 When you can’t s
ee,

May get you, A glimpse, Of eternity.” I
definitely

won’t be passing
 any cars.

July 14, 2012

Segway’n USA

Documenting my trip around t
he US on my

very own Segway!

August 20, 2012

Well I made it 1200 miles already, a
nd I passed

through some interesting
places on the

 way:

Walla Walla, WA, Magic City, ID, Bountiful,

UT, Last Chance, CO, Why, AZ and Truth or

Consequences, N
M.

Fantastic! This looks
great; I can’t wait to add
more entries to my page.

you are here 4 85

building blocks

Adding some new elements
You have the basic elements of HTML down. You’ve gone from a hand-
written journal to an online version in just a few steps using the basic
HTML elements <p>, <h1>, <h2>, and .

Now we’re going to s-t-r-e-t-c-h your brain a little and add a few more
common elements. Let’s take another look at Tony’s journal and see
where we can spruce things up a bit…

Check this out: Tony has a little quote
stuck at the end of his first post. It’s
his remixed version of a Lao Tzu quote:
“A journey of a thousand miles begins
with one Segway.”

HTML has an element, <q>, for just that kind of
thing. Let’s take a look on the next page…

86 Chapter 3

quotes in your html

Got a short quote in your HTML? The <q> element is just what
you need. Here’s a little test HTML to show you how it works:

Meet the q element

<html>
 <head>
 <title>Quote Test Drive</title>
 </head>
 <body>
 <p>
 You never know when you'll need a good quote, how
 about <q>To be or not to be</q>, or <q>Wherever you go, there you are</q>.
 </p>
 </body>
</html>

We’ve got two quotes in this HTML…

We surround each quote with a <q> opening tag and
a </q> closing tag. Notice that we don’t put our own
double-quote characters around the quotes.

And here’s how the quotes look in the
browser. Notice the browser has gone to
the trouble of adding the double quotes.

And test drive

Not all browsers display
double quotes around the

content in the <q> element.

This is unfortunate, because if

you add your own double quotes,

some browsers will display

TWO sets of quotes. We advise testing <q> in

different browsers to see the results that you get.

you are here 4 87

building blocks

There are lots of reasons people use double quotes
in text, but when we use <q>, that means something
specific—it means the text of an actual quote (in Tony’s
case, a “remixed” quote).

In other words, what we’ve done is to add more
meaning by marking up the quote. Before we added
the <q> element, the browser just knew it had a
paragraph of text with a few double-quote characters
in it. Now, because we’re using the <q> element, the
browser knows that some of that text is a real quote.

So what? Well, now that the browser knows this is a
quote, it can display it in the best way possible. Some
browsers will display double quotes around the text
and some won’t; and in instances where browsers are
using non-English languages, other methods might be
used. And don’t forget mobile devices, like cell phones,
or audio HTML browsers and screen readers for the
visually impaired. It’s also useful in other situations,
such as a search engine that scours the Web looking for
web pages with quotes. Structure and meaning in your
pages are Good Things.

One of the best reasons (as you’ll see when we get back
to presentation and CSS later in the book) is that you’ll
be able to style quotes to look just the way you want.
Suppose you want quoted text to be displayed in italics
and colored gray? If you’ve used the <q> element to
structure the quoted content in your web pages, you’ll
be able to do just that.

No. We’re trying to make things
more structured and meaningful.

See! Using double
quotes doesn’t
make something an
actual quote.

Wait a sec…you removed
the double quotes and

substituted a <q> element, which just
displays double quotes? Am I supposed
to be impressed? Are you trying to
make things more complicated?

88 Chapter 3

adding a quote

<html>
 <head>
 <title>Segway'n USA</title>
 </head>
 <body>

 <h1>Segway'n USA</h1>
 <p>
 Documenting my trip around the US on my very own Segway!
 </p>

 <h2>August 20, 2012</h2>

 <p>
 Well I made it 1200 miles already, and I passed
 through some interesting places on the way: Walla Walla,
 WA, Magic City, ID, Bountiful, UT, Last Chance, CO,
 Why, AZ and Truth or Consequences, NM.
 </p>

 <h2>July 14, 2012</h2>
 <p>
 I saw some Burma Shave style signs on the side of the
 road today: "Passing cars, When you can't see, May get
 you, A glimpse, Of eternity." I definitely won't be passing
 any cars.
 </p>

 <h2>June 2, 2012</h2>

 <p>
 My first day of the trip! I can't believe I finally got
 everything packed and ready to go. Because I'm on a Segway,
 I wasn't able to bring a whole lot with me: cell phone, iPod,
 digital camera, and a protein bar. Just the essentials. As
 Lao Tzu would have said, "A journey of a thousand miles begins
 with one Segway."
 </p>
 </body>
</html>

Here’s Tony’s journal. Go ahead and rework his Lao Tzu quote to use the <q>
element. After you’ve done it on paper, make the changes in your “journal.html” file
and give it a test drive. You’ll find the solution in the back of the chapter.

you are here 4 89

building blocks

The Case of the Elements Separated at Birth
Identical twins were born in Webville a number of years ago, and by
a freak accident involving an Internet router malfunction, the twins
were separated shortly after birth. Both grew up without knowledge
of the other, and only through another set of freak circumstances did
they later meet and discover their identity, which they decided to
keep secret.

After the discovery, they quickly learned that they shared a
surprising number of things in common. Both were married
to wives named Citation. They also both had a love for

quotations. The first twin, the <q> element, loved short, pithy
quotes, while the second, <blockquote>, loved longer quotes,

often memorizing complete passages from books or poems.

Being identical twins, they bore a strong resemblance to each other,
and so they decided to put together an evil scheme whereby they
might stand in for each other now and then. They first tested this on
their wives (the details of which we won’t go into), and they passed
with flying colors—their wives had no idea (or at least pretended not
to).

Next they wanted to test their switching scheme in the workplace
where, as another coincidence, they both performed the same job:
marking up quotes in HTML documents. So, on the chosen day, the
brothers went to the other’s workplace fully confident they’d pull off
their evil plan (after all, if their wives couldn’t tell, how could their
bosses?), and that’s when things turned bad. Within 10 minutes of
starting the work day, the brothers had both been found to be imposters
and the standards authorities were immediately alerted.

How were the twins caught in the act?
Keep reading for more clues…

Five-Minute
Mystery

90 Chapter 3

creating longer quotes

Looooong quotes
Now that you know how to do short quotes, let’s
tackle long ones. Tony’s given us a long quote
with the Burma Shave jingle.

In his journal, Tony just put the Burma Shave
quote right inside his paragraph, but wouldn’t it
be better if we pulled this quote out into a “block”
of its own, like this:

I saw some Burma Shave style signs on the side
of the road today:
 Passing cars,
 When you can’t see,
 May get you,
 A glimpse,
 Of eternity.
I definitely won’t be passing any cars.

That’s where the <blockquote> element comes
in. Unlike the <q> element, which is meant for
short quotes that are part of an existing paragraph,
the <blockquote> element is meant for longer
quotes that need to be displayed on their own.

If you don’t know what
“Burma Shave” slogans are,
we’ll tell you all about
them in just a few pages…

It’s important to use
the right tool for the job, and
the <blockquote> element is
perfect for this job.

you are here 4 91

building blocks

Adding a blockquote

We also put each line of text on a
separate line so it reads more like a
Burma Shave slogan.

<blockquote> creates a
separate block (like <p>
does), plus it indents the
text a bit to make it
look more like a quote.
Just what we wanted…

1 Open your “journal.html” file and locate the July 14th
entry. Rework the paragraph to look like this:

2 Time for another test drive. Open “journal.html” in your browser
and take a look at the results of your work:

Let’s get a <blockquote> into Tony’s online journal.

But our quote isn’t look
ing

quite like we wanted because

all the lines are running

together. We really wanted

them on different lines.
Hmmm. Let’s come back to

that in a bit…

To insert the <blockquote>
element, we need to end this
paragraph first.

Next we put the Burma Shave text in the
<blockquote> element.

And finally, we need to add a <p> tag to start this paragraph after the <blockquote>.

<h2>July 14, 2012</h2>
<p>
 I saw some Burma Shave style signs on the
 side of the road today:
</p>
<blockquote>
 Passing cars,
 When you can't see,
 May get you,
 A glimpse,
 Of eternity.
</blockquote>
<p>
 I definitely won't be passing any cars.
</p>

92 Chapter 3

questions about quotes and blockquotes

Q: So let me see if I have this right: I
use <q> when I just want to have some
quote in with the rest of my paragraph,
and I use <blockquote> when I have a
quote that I want to break out on its own
in my web page?

A: You’ve got it. In general you’ll use
<blockquote> if you want to quote something
that was a paragraph or more, while you can
use <q> anytime you just want to throw in a
quote as part of your running text.

Q: Multiple paragraphs in a block
quote? How do I do that?

A: Easy. Just put paragraph elements
inside your <blockquote>, one for each
paragraph. Do try this at home.

Q: How do I know what my quotes
or block quotes will look like in other
browsers? It sounds like they may handle
it differently.

A: Yes. Welcome to the World Wide Web.
You don’t really know what your quotes will
look like without trying them out in different
browsers. Some browsers use double quotes,
some use italics, and some use nothing at
all. The only way to really determine how
they’ll look is to style them yourself, and we’ll
certainly be doing that later.

Q: I get that the <blockquote> element
breaks its text out into a little block of
its own and indents it, so why isn’t the
<blockquote> inside the paragraph, just
like the <q> element is?

A: Because the <blockquote> really is like
a new paragraph. Think about this as if you
were typing it into a word processor. When
you finish one paragraph, you hit the Return
key twice and start a new paragraph. To type
a block quote, you’d do the same thing and
indent the quote. Put this in the back of your
mind for a moment; it’s an important point
and we’re going to come back to it in a sec.

Also, remember that the indenting is
just the way some browsers display a
<blockquote>. Some browsers might not use
indentation for <blockquote>. So, don’t rely
on a <blockquote> to look the same in all
browsers.

Q: Can I combine quote elements?
For instance, could I use the <q> element
inside the <blockquote> element?

A: Sure. Just like you can put a <q>
element inside the <p> element, you can
put <q> inside <blockquote>. You might do
this if you’re quoting someone who quoted
someone else. But a <blockquote> inside a
<q> doesn’t really make sense, does it?

Q: You said that we can style these
elements with CSS, so if I want to make
the text in my <q> element italics and
gray, I can do that with CSS. But couldn’t
I just use the element to italicize my
quotes?

A: Well, you could, but it wouldn’t be
the right way to do it, because you’d be
using the element for its effect on the
display rather than because you’re really
writing emphasized text. If the person you
were quoting really did emphasize a word, or
you want to add emphasis to make a strong
point about the quote, then go right ahead
and use the element inside your quote.
But don’t do it simply for the italics. There
are easier and better ways to get the look
you want for your elements with CSS.

you are here 4 93

building blocks

Five-Minute
Mystery

Solved

Solved: The Case of the Elements Separated at Birth
How were the identical quote twins found to be imposters so quickly?

As you’ve no doubt guessed by now, <q> and <blockquote> were
discovered as soon as they went to work and began to
mark up text. <q>’s normally unobtrusive little quotes
were popping out into blocks of their own, while
<blockquote>’s quotes were suddenly being lost inside
regular paragraphs of text. In follow-up interviews with
the victims of the pranks, one editor complained, “I lost
an entire page of liner quotes thanks to these wackos.” After
being reprimanded and sent back to their respective jobs, <blockquote>
and <q> fessed up to their wives, who immediately left town together in a
T-Bird convertible. But that’s a whole ’nother story (it didn’t end well).

94 Chapter 3

block and inline elements

The real truth behind the q and blockquote mystery
Okay, it’s time to stop the charade: <blockquote> and <q> are actually different types of elements.
The <blockquote> element is a block element and the <q> element is an inline element. What’s the
difference? Block elements are always displayed as if they have a linebreak before and after them,
while inline elements appear “in line” within the flow of the text in your page.

Remember: block elements stand on their own;
inline elements go with the f low.

<h1>, <h2>, ... , <h6>, <p>, and <blockquote> are all block elements.
Block: stands on its own Inline: goes with the flow

<q>, <a>, and are inline elements.

<q>, on the other
hand, like all
inline elements, is
just displayed in
the flow of the
paragraph it’s in.

p

q

h2

p

blockquote

Each block element is
displayed on its own, as
if it has a linebreak
before and after it.

Block elements
separate
content into
blocks.

you are here 4 95

building blocks

Q: I think I know what a linebreak is; it’s like hitting the carriage return
on a typewriter or the Return key on a computer keyboard. Right?

A: Pretty much. A linebreak is literally a “break in the line,” like
this, and happens when you hit the Return key, or on some computers, the Enter
key. You already know that linebreaks in HTML files don’t show up visually when
the browser displays a page, right? But now you’ve also seen that anytime you
use a block element, the browser uses linebreaks to separate each “block.”

Don’t underestimate the power of knowing how HTML
works. You’re soon going to see that the way you combine
elements in a page has a lot to do with whether elements
are displayed as block or inline. We’ll get to all that.

In the meantime, you can also think about block versus
inline this way: block elements are often used as the major
building blocks of your web page, while inline elements
usually mark up small pieces of content. When you’re
designing a page, you typically start with the bigger
chunks (the block elements) and then add in the inline
elements as you refine the page.

The real payoff is going to come when we get to
controlling the presentation of HTML with CSS. If you
know the difference between inline and block, you’re
going to be sipping martinis while everyone else is still
trying to get their layout right.

Once again, this all sounds great,
but why is all this talk of linebreaks,

blocks, and inline elements useful? Can
we get back to web pages?

96 Chapter 3

carriage returns and the
 element

<h2>July 14, 2012</h2>
<p>
 I saw some Burma Shave style signs on the
 side of the road today:
</p>
<blockquote>
 Passing cars,

 When you can't see,

 May get you,

 A glimpse,

 Of eternity.

</blockquote>
<p>
 I definitely won't be passing any cars.
</p>

Add a
 element to any line
when you want to break the
flow and insert a “linebreak.”

Wouldn’t that be nice? You’d actually be able to make
the browser pay attention and insert some carriage
returns for a change.

Turns out there is an element, the
 element, just
for that purpose. Here’s how you use it:

What if you had an element whose
only job was to give you a linebreak
when you needed one?

Here’s the July
14th snippet from
Tony’s page.

I’ve been thinking
about the Burma Shave lines. I wasn’t
surprised that they weren’t broken up
because we’ve said from the beginning
that whitespace and linebreaks aren’t
displayed by the browser…

…but the only way I can think of
to fix this is to put each one in

a block element like a paragraph.
Otherwise, how can you get the
browser to add linebreaks?

you are here 4 97

building blocks

Here’s what the changes should
look like. Now it reads like a
Burma Shave slogan should read!

Each line now has a
linebreak after it.

Go ahead and add the
 elements to Tony’s journal. After you
make the changes, save the file, and give it a test drive.

98 Chapter 3

void elements have no closing tag

Here’s the closing tag.

 </br>

Here’s the opening tag.

Content? Hmm, the whole point of
this element is to insert a linebreak.
There’s really no content.

 </br>

Okay, typing this in is REALLY silly. We know there’s never going to be any content between those tags.

The
 element is an element that doesn’t have any content. Why?
Because it’s just meant to be a linebreak, nothing else. So, when an
element doesn’t have any real content by design, we just use a shorthand
to represent the element and it ends up looking like
. After all, if we
didn’t have this shorthand, you’d be writing
</br> every time you
needed a linebreak, and how much sense does that make?

 isn’t the only element like this; there are others, and we have a name
for them: void elements. In fact, we’ve already seen another void element,
the element. We’ll be coming back to look at the element in
detail in a couple chapters.

Keep in mind, the reason for the shorthand isn’t laziness so much as it is
efficiency. It’s more efficient to represent void elements this way (efficient
in typing, in the number of characters that end up in a page, and so on).
In fact, after reading HTML for a while, you’ll find that it is easier on
your eyes too.

Exactly. It doesn’t have any content.

Yeah, if we just type this,
then it really represents
the same thing.

In Chapter 1 we said that an element
is an opening tag + content + closing

tag. So how is
 an element? It doesn’t
have any content, and it doesn’t even
have a closing tag.

I’m half the
element I used to
be…(sniff sniff).

They used
to be called
“empty
elements,”
which
apparently
made too
much sense, so
they renamed
them to void.
Personally, we
still like empty.

you are here 4 99

building blocks

Q: So, the only purpose of
 is to insert a
linebreak?

A: Right; the only place the browser typically inserts
breaks in your content is when you start a new block
element (like <p>, <h1>, and so on). If you want to insert a
linebreak into your text, then you use the
 element.

Q: Why is
 called an “void” element?

A: Because it has no content, as in
element = opening tag + content + closing tag. So, it’s void
because there’s no content and no closing tag. Think like
the “void of space”; there’s nothing there, it’s empty.

Q: I still don’t get it. Explain why the

 element is “void”?

A: Think about an element like <h1> (or <p> or <a>).
The whole point of the element is to mark up some content,
like:

<h1>Don't wait, order now</h1>

With the
 element, the point is just to insert a linebreak
into your HTML. There is no content you are trying to mark
up. We don’t need all the extra brackets and markup, so
we just shorten it into a more convenient form. If you’re
thinking “void” is kind of a weird name, you’re right: it
comes from computer science and means “no value.”

Q: Are there any other void elements? I think
 must be a void element, too, right?

A: Yes, there are a couple of them. You’ve already
seen us use the element, and we’ll be getting to the
details of this element soon.

Q: Can I make any element void? For instance, if I
have a link, and don’t want to give it any content, can I
just write instead?

A: No. There are two types of elements in the world:
normal elements, like <p>, <h1>, and <a>, and void
elements, like
 and . You don’t switch back
and forth between the two. For instance, if you just typed
, that’s an opening tag without
content or a closing tag (not good). If you write
, that’s an empty element and
is perfectly fine, but isn’t very useful in your page!

Q: I've seen pages not with
, but with
.
What does that mean?

A: It means exactly the same thing. The syntax used
in
 is a more strict syntax that works with XHTML.
Wheneven you see
, just think
, and unless
you’re planning on writing pages compliant with XHTML
(see the appendix for more information on XHTML), you
should just use
 in your HTML.

Elements that don’t have
any content by design
are called void elements.
When you need to use a
void element, like

or , you only use
an opening tag. This is
a convenient shorthand
that reduces the amount of
markup in your HTML.

100 Chapter 3

we need a list for tony's site

You’ve come a long way already in this chapter: you’ve
designed and created Tony’s site, you’ve met a few new
elements, and you’ve learned a few things about elements
that most people creating pages on the Web don’t even
know (like block and inline elements, which are really
going to come in handy in later chapters).

But you’re not done yet. We can take Tony’s site from
good to great by looking for a few more opportunities to
add some markup.

Like what? How about lists? Check this out:

Meanwhile, back at Tony’s site…

Well I’ve made it 1200 miles already, and
I passed through some interesting places on
the way:
 1. Walla Walla, WA
 2. Magic City, ID
 3. Bountiful, UT
 4. Last Chance, CO
 5. Why, AZ
 6. Truth or Consequences, NM

Wouldn’t it be great if we could mark up this text so the
browser knows this text is a list? Then the browser could
display the list items in a more useful way. Something like this:

There’s a list right here. Tony wrote the list of cities that he’s been through in his August journal entry.

Note that not only is
this a list, but it’s an
ordered list. Tony visited
these cities in a particular
order.

you are here 4 101

building blocks

You should be sensing a common theme by now. You
always want to choose the HTML element that is closest
in meaning to the structure of your content. If this is a
list, let’s use a list element. Doing so gives the browser and
you (as you’ll see later in the book) the most power and
flexibility to display the content in a useful manner.

<p>
1. Red Segway
</p>
<p>
2. Blue Segway
</p>

It wouldn’t be hard to make a list using the <p> element.
It would end up looking something like this:

Of course, you could use the p
element to make a list…

But there are lots of reasons not to.

Top two preferred
colors for Segway.

Remember, it’s
important to use the

right tool for the job, and
the <p> element is NOT the
right tool for this job.

Answer: A, B, C, & D

Why not use <p> to make lists?
(Choose all that apply.)

A. HTML has an element for lists.
If you use that, then the browser
knows the text is a list, and can
display it in the best way possible.

B. The paragraph element is really
meant for paragraphs of text, not
lists.

C. It probably wouldn’t look
much like a list, just a bunch of
numbered paragraphs.

D. If you wanted to change the
order of the list, or insert a new
item, you’d have to renumber
them all. That would suck.

102 Chapter 3

constructing a list

Constructing HTML lists in two easy steps

<h2>August 20, 2012</h2>

<p>

Well I've made it 1200 miles already, and I passed
through some interesting places on the way:

</p>

Walla Walla, WA

Magic City, ID

Bountiful, UT

Last Chance, CO

Why, AZ

Truth or Consequences, NM

<h2>July 14, 2012</h2>

<p>

I saw some Burma Shave style signs on the side of
the road today:

</p>

Put each list item in an element.
To create a list, you put each list item in its own element,
which means enclosing the content in an opening tag and
a closing tag. As with any other HTML element, the
content between the tags can be as short or as long as you like
and broken over multiple lines.

Step one:

Locate this HTML in your “journal.html” file and keep up with the changes as we make them.

…and then enclose each list item with an , set of tags.

Each of these
elements will become
an item in the list.

Creating an HTML list requires two elements that, when used together,
form the list. The first element is used to mark up each list item. The
second determines what kind of list you’re creating: ordered or unordered.

Let’s step through creating Tony’s list of cities in HTML.

First, move the list items outside of the paragraph. The
list is going to stand on its own.

We’re just showing a fragment of the

HTML from Tony’s journal here.

you are here 4 103

building blocks

Enclose your list items with either the or element.
If you use an element to enclose your list items, then
the items will be displayed as an ordered list; if you use ,
the list will be displayed as an unordered list. Here’s how you
enclose your items in an element.

Step two:

<h2>August 20, 2012</h2>

<p>

Well I've made it 1200 miles already, and I passed
through some interesting places on the way:

</p>

 Walla Walla, WA

 Magic City, ID

 Bountiful, UT

 Last Chance, CO

 Why, AZ

 Truth or Consequences, NM

<h2>July 14, 2012</h2>

<p>

I saw some Burma Shave style signs on the side of
the road today:

</p>

We want this to be an ordered list, because Tony visit
ed the

cities in a specific order. So we use an opening tag.

And here we close the element.

All the list items sit in the
middle of the element
and become its content.

Make It Stick

HTML

Wash
Use

ul or ol
for lists

the
cat

is for
structure

unordered list = ul
ordered list = ol
list item = li

Again, we’re just showing a fragment of the
HTML from Tony’s journal here.

Is a block element or inline? What about ?

104 Chapter 3

test driving the list

Here’s the new and
improved list of cities.

It turns out Tony actually visited Arizona after New Mexico. Can you rework the list so the numbering is correct?

Taking a test drive through the cities
Make sure you’ve added all the HTML for the list, reload your

“journal.html” file and you should see something like this:

Notice that the browser takes care
of automatically numbering each list
item (so you don’t have to).

There’s a linebreak before the list
starts, so must be a block element.

But there’s also a linebreak after each
item, so must be a block element too!

you are here 4 105

building blocks

<h2>June 2, 2012</h2>

<p>

 My first day of the trip! I can't believe I finally got

 everything packed and ready to go. Because I'm on a Segway,

 I wasn't able to bring a whole lot with me:

 cell phone

 iPod

 digital camera

 and a protein bar

 Just the essentials. As

 Lao Tzu would have said, <q>A journey of a

 thousand miles begins with one Segway.</q>

</p>

Here’s another list from Tony’s journal: cell phone, iPod, digital camera, and a protein
bar. You’ll find it in his June 2nd entry. This is an unordered list of items.
The HTML for this entry is typed below. Go ahead and add the HTML to change the
items into an HTML unordered list (remember, you use for unordered lists).
We’ve already reformatted some of the text for you.
When you’ve finished, check your answers in the back of the chapter. Then make
these changes in your “journal.html” file and test.

106 Chapter 3

more about lists

Q: Do I always have to use and together?

A: Yes, you should always use and together (or and
). Neither one of these elements really makes sense without the
other. Remember, a list is really a group of items: the element
is used to identify each item, and the element is used to group
them together.

Q: Can I put text or other elements inside an or
element?

A: No, the and elements are designed to work only with
the element.

Q: What about unordered lists? Can I make the bullet look
different?

A: Yes. But hold that thought. We’ll come back to that when we’re
talking about CSS and presentation.

Q: What if I wanted to put a list inside a list? Can I do that?

A: Yes, you sure can. Make the content of any either or
, and you’ll have a list within a list (what we call a nested list).

 Charge Segway
 Pack for trip

 cell phone
 iPod
 digital camera
 a protein bar

 Call mom

Q: I think I basically understand how block elements and
inline elements are displayed by the browser, but I’m totally
confused about what elements can go inside other elements, or,
as you say, what can be “nested” inside of what.

A: That’s one of the hardest things to get straight with HTML. This
is something you’re going to be learning for a few chapters, and we’ll
show you a few ways to make sure you can keep the relationships
straight. But we’re going to back up and talk about nesting a little
more first. In fact, since you brought it up, we’ll do that next.

Q: So HTML has ordered and unordered lists. Are there any
other list types?

A: Actually, there is another type: definition lists. A definition list
looks like this:

<dl>
 <dt>Burma Shave Signs</dt>
 <dd>Road signs common in the U.S. in
the 1920s and 1930s advertising shaving
products.</dd>
 <dt>Route 66</dt>
 <dd>Most famous road in the U.S. highway
system.</dd>
</dl>

Q: Burma Shave?

A: Burma Shave was a company that made brushless shaving
cream in the early part of the 20th century. They began advertising
their product using roadside signs in 1925, and these signs proved to
be very popular (if somewhat distracting for drivers).

The signs were grouped in bunches of four, five, or six, each with one
line from the slogan. At one point, there were 7,000 of these signs
on roadsides throughout the United States. Most are gone now, but
there are still a few left, here and there.

Nested list
Here’s the
. It
encloses
the nested
list.

Each item in the list
has a term, <dt>, and
a description, <dd>.

Type this in and
give it a try.

you are here 4 107

building blocks

Putting one element inside
another is called “nesting”
When we put one element inside another element, we
call that nesting. We say, “the <p> element is nested
inside the <body> element.” At this point, you’ve
already seen lots of elements nested inside other
elements. You’ve put a <body> element inside an
<html> element, a <p> element inside a <body>
element, a <q> element inside a <p> element, and
so on. You’ve also put a <head> element inside the
<html> element, and a <title> element inside the
<head>. That’s the way HTML pages get constructed.

The more you learn about HTML, the more
important having this nesting in your brain becomes.
But no worries—before long you’ll naturally think
about elements this way.

<html>
<body>

<p>
<q>

<q> nested inside <p>, nested inside <body>, nested inside <html>.

108 Chapter 3

understanding nesting by drawing

To understand the nesting
relationships, draw a picture
Drawing the nesting of elements in a web
page is kind of like drawing a family tree. At
the top you’ve got the great-grandparents,
and then all their children and grandchildren
below. Here’s an example…

<html> is always the
element at the root
of the tree.

Simple web page

<html> has two nested
elements: <head> and
<body>. You can call them
both “children” of <html>.

The parent of <q> is <p>, the parent of <p> is <body>, and the parent of <body> is <html>.

<title> is nested within
the <head> element.

<html>
 <head>
 <title>Musings</title>
 </head>
 <body>
 <p>
 To quote Buckaroo,
 <q>The only reason
 for time is so
 that everything
 doesn't happen
 at once.</q>
 </p>
 </body>
</html>

Let’s translate this
into a diagram, where

each element becomes a
box, and each line connects

the element to another element
that is nested within it.

<body> is nested within the <html>
element, so we say <body> is the
“child” of <html>.

title

head body

html

p

q

you are here 4 109

building blocks

Your first payoff for understanding how elements are nested is that
you can avoid mismatching your tags. (And there’s gonna be more
payoff later; just wait.)

What does “mismatching your tags” mean and how could that
happen? Take a look at this example:

<p>I'm so going to tweet this</p>

p

em

GOOD: here the element is
nested inside the <p>.

SAFETY FIRST

Properly
nest
your

elements

Using nesting to make sure your tags match

So far, so good, but it’s also easy to get sloppy and write some HTML
that looks more like this:

It’s okay to mess up your nesting if you like playing Russian roulette. If you write HTML
without properly nesting your elements, your pages may work on some browsers but not
on others. By keeping nesting in mind, you can avoid mismatching your tags and be sure
that your HTML will work in all browsers. This is going to become even more important
as we get more into “industrial strength HTML” in later chapters.

<p>I'm so going to tweet this</p>

p

em

p

em

Here’s how this HTML looks; is nested inside <p>.

Given what you now know about nesting, you know the element
needs to be nested fully within, or contained in, the <p> element.

BAD: here the element has leaked outside of the
<p> element, which means it’s not properly nested inside it.

So what?

WRONG: the <p> tag
ends before the
tag! The element
is supposed to be inside
the <p> element.

110 Chapter 3

catching mismatched tags

Below, you’ll find an HTML file
with some mismatched tags in it.
Your job is to play like you’re the
browser and locate all the errors.

After you’ve done the
exercise, look at the
end of the chapter to
see if you caught all
the errors.

BE the Browser

<html>
<head>
 <title>Top 100</title>
<body>
<h1>Top 100
<h2>Dark Side of the Moon</h2>
<h3>Pink Floyd</h3>
<p>
 There's no dark side of the moon; matter of fact <q>it's all dark.
</p></q>

 Speak to Me / Breathe
 On The Run
 Time
 The Great Gig in The Sky
 Money
 Us And Them
 Any Colour You Like
 Brain Damage
 Eclipse

</p>
<h2>XandY</h3>
<h3>Coldplay</h2>

 Square One
 What If?
 White Shadows
 Fix You
 Talk
 XandY
 Speed of Sound
 A Message
 Low
 Hardest Part
 Swallowed In The Sea
 Twisted Logic

</body>
</head>

you are here 4 111

building blocks

Who am I?
A bunch of HTML elements, in full costume, are playing a party
game, “Who am I?” They’ll give you a clue—you try to guess who
they are based on what they say. Assume they always tell the
truth about themselves. Fill in the blanks to the right to identify
the attendees. Also, for each attendee, write down whether or not
the element is inline or block.

Tonight’s attendees:

Any of the charming HTML elements you’ve seen so far just
might show up!

I’m the #1 heading.

I’m all ready to link to another page.

Emphasize text with me.

I’m a list, but I don’t have my affairs in order.

I’m an item that lives inside a list.

I’m a real linebreaker.

Name
Inline or
block?

I keep my list items in order.

I’m all about image.

Quote inside a paragraph with me.

Use me to quote text that stands on its own.

112 Chapter 3

character entities are for special characters

Because browsers use < and > to begin and end tags, using them in
the content of your HTML can cause problems. But HTML gives
you an easy way to specify these and other special characters using
a simple abbreviation called a character entity. Here’s how it works:
for any character that is considered “special” or that you’d like to
use in your web page, but that may not be a typeable character
in your editor (like a copyright symbol), you just look up the
abbreviation and then type it into your HTML. For example, the >
character’s abbreviation is > and the < character’s is <.

So, say you wanted to type “The <html> element rocks.” in your
page. Using the character entities, you’d type this instead:

 The <html> element rocks.

Another important special character you should know about is the
& (ampersand) character. If you’d like to have an & in your HTML
content, use the character entity & instead of the & character
itself.

So what about the copyright symbol (that’s ©right;)? And
all those other symbols and foreign characters? You can look up
common ones at this URL:

 http://www.w3schools.com/tags/ref_entities.asp

or, for a more exhaustive list, use this URL:

 http://www.unicode.org/charts/

You’re right, that can cause problems.

I was just creating a web page
explaining everything I was learning from

this book, and I wanted to mention the <html>
element inside my page. Isn’t that going to
mess up the nesting? Do I need to put double

quotes around it or something?

you are here 4 113

building blocks

Dr. Evel, in his quest for world domination, has put up a private web page to be
used by his evil henchmen. You’ve just received a snippet of intercepted HTML
that may contain a clue to his whereabouts. Given your expert knowledge of
HTML, you’ve been asked to crack the code and discover his location. Here’s a
bit of the text from his home page:

Crack the Location Challenge

There's going to be an evil henchman meetup
next month at my underground lair in
Ðετröìτ.
Come join us.

Hint: visit http://www.w3schools.com/tags/ref_entities.asp
and/or type in the HTML and see what your browser displays.

Q: Wow, I never knew the browser
could display so many different
characters. There are a ton of different
characters and languages at the
www.unicode.org site.

A: Be careful. Your browser will only
display all these characters if your computer
or device has the appropriate fonts installed.
So, while you can probably count on the
basic entities from the www.w3schools.com
page to be available on any browser, there is
no guarantee that you can display all these
entities. But, assuming you know something
about your users, you should have a good
idea of what kind of foreign language
characters are going to be common on their
machine.

Q: You said that & is special and I
need to use the entity & in its place,
but to type in any entity I have to use a &.
So for, say, the > entity, do I need to type
&gt;?

A: No, no! The reason & is special is
precisely because it is the first character of
any entity. So, it’s perfectly fine to use & in
your entity names, just not by itself.

Just remember to use & anytime you type in
an entity, and if you really need an & in your
content, use & instead.

Q: When I looked up the entities at the
www.w3cschools.com, I noticed that each
entity has a number too. What do I use
that for?

A: You can use either the number, like
d or the name of an entity in your HTML
(they do the same thing). However, not all
entities have names, so in those cases your
only choice is to use the number.

114 Chapter 3

tasting a few elements

Here are a bunch of elements you
already know, and a

few you don’t.
Remember, half the fun of HTML
is experimenting! So make some
files of your own and try these

out.

<q>

<bl
ock

quo
te>

<pre>

<code>

Use this element for short
quotes…you know, like “to be
or not to be,” or “No matter
where you go, there you are.”

Use this element for
formatted text when you want
the browser to show your text
exactly as you typed it.

This is for lengthy quotations—
something that you want to
highlight as a longer passage, say,
from a book.

The code element is used
for displaying code from a
computer program.

Need to display a list? Say, a list of ingredients in a recipe or a to-do list? Use the element.

If you need an
ordered list instead,
use the element.

A void element for
making linebreaks.

This is an element
for including an
image, like a photo,
in your page.

 is for items in lists, like

chocolate, hot c
hocolate,

chocolate syrup…

<a>

Whenever you want to make a link, you’ll need the <a> element.
<time>

This element tells the
browser that the content is
a date or time, or both.

<p>Just give me a
paragraph, please.

 Use this element to mark up
text you want emphasized
with extra strength.

Use this element to
mark up text you'd
say in a different
voice, like if you are
emphasizing a point.

Element
Soup

you are here 4 115

building blocks

Rockin’ page. It’s perfect for
my trip and it really does a good job of
providing an online version of my journal.

You’ve got the HTML well organized too, so
I should be able to add new material myself.
So, when can we actually get this off your

computer and onto the Web?

 � Plan the structure of your web pages before you
start typing in the content. Start with a sketch,
then create an outline, and finally write the
HTML.

 � Plan your page starting with the large, block
elements, and then refine with inline elements.

 � Remember, whenever possible, use elements to
tell the browser what your content means.

 � Always use the element that most closely
matches the meaning of your content. For
example, never use a paragraph when you
need a list.

 � <p>, <blockquote>, , , and are
all block elements. They stand on their own
and are displayed (by default) with a linebreak
above and below the content within them.

 � <q> and are inline elements. The content
in these elements flows in line with the rest of
the content in the containing element.

 � Use the
 element when you need to insert
your own linebreaks.

 �
 is a “void” element.

 � Void elements have no content.

 � A void element consists of only one tag.

 � An “empty” element has no content. But it does
have both opening and closing tags.

 � A nested element is an element contained
completely within another element. If your
elements are nested properly, all your tags will
match correctly.

 � You make an HTML list using two elements in
combination: use with for an ordered
list; use with for an unordered list.

 � When the browser displays an ordered list, it
creates the numbers for the list so you don’t
have to.

 � You can build nested lists within lists by putting
 or elements inside your elements.

 � Use character entities for special characters in
your HTML content.

116 Chapter 3

right brain resting station

HTMLcross
It’s time to give your right brain a break and put that left brain to work: all the
words are HTML-related and from this chapter.

Across
1. Tony’s transportation.
8. Famous catchy road signs.
10. <q> is this type of element.
11. Another void element.
13. Element without content.
14. Major building blocks of your pages.
15. Use for these kinds of lists.

Down
2. Left together in a T-bird.
3. Max speed of a Segway.
4. Tony won’t be doing any of this.
5. Putting one element inside another is
called this.
6. Requires two elements.
7. Block element for quotes.
9. Use for these kinds of lists.
12. Void elements have none.

1 2

3

4

5

6

7 8 9

10 11 12

13 14

15

Across
3. Use for these kinds of lists.
5. Block element for quotes.
7. Major building blocks of your

pages.
9. <q> is this type of element.

10. Left together in a T-Bird.
13. Tony won't be doing any of this.
14. Element without content.
15. Use for these kinds of lists.

Down
1. Empty elements have none.
2. Putting one element inside another

is called this.
4. Famous catchy road signs.
6. Tony's transportation.
8. Requires two elements.

11. Another empty tag.
12. Max speed of a Segway.

you are here 4 117

building blocks

Okay, it doesn’t LOOK any
different, but don’t you FEEL
better now?

Here’s the rework of Tony’s Lao Tzu quote using the <q> element. Did
you give your solution a test drive?

We’ve added the <q> opening
tag before the start of the

quote and the </q> closing t

ag
at the very end.

Notice that we also
removed the double quotes.

<p>

 My first day of the trip! I can't believe I finally got

 everything packed and ready to go. Because I'm on a

 Segway, I wasn't able to bring a whole lot with me:

 cell phone, iPod, digital camera, and a protein bar. Just

 the essentials. As Lao Tzu would have said, <q>A journey

 of a thousand miles begins with one Segway.</q>

</p>

Here’s the part that changes…

And here’s the test drive…

118 Chapter 3

exercise solutions

Here’s another list from Tony’s journal: cell phone, iPod, digital
camera, and a protein bar. You’ll find it in his June 2 entry. This is an
unordered list of items.
Make these changes in your “journal.html” file, too. Does it look like
you expected?

<h2>June 2, 2012</h2>

<p>

 My first day of the trip! I can't believe I finally got

 everything packed and ready to go. Because I'm on a Segway,

 I wasn't able to bring a whole lot with me:

</p>

 cell phone

 iPod

 digital camera

 and a protein bar

<p>

 Just the essentials. As

 Lao Tzu would have said, <q>A journey of a

 thousand miles begins with one Segway.</q>

</p>

First, end the previous paragra
ph.

Start the unordered list.
Put each item into an element.

End the unordered list.
And we need to start a new paragraph.

you are here 4 119

building blocks

<html>
<head>
 <title>Top 100</title>
<body>
<h1>Top 100
<h2>Dark Side of the Moon</h2>
<h3>Pink Floyd</h3>
<p>
 There's no dark side of the moon; matter of fact <q>it's all dark.
</p></q>

 Speak to Me / Breathe
 On The Run
 Time
 The Great Gig in The Sky
 Money
 Us And Them
 Any Colour You Like
 Brain Damage
 Eclipse

</p>
<h2>XandY</h3>
<h3>Coldplay</h2>

 Square One
 What If?
 White Shadows
 Fix You
 Talk
 XandY
 Speed of Sound
 A Message
 Low
 Hardest Part
 Swallowed In The Sea
 Twisted Logic

</body>
</head>

Solution
BE the Browser

Missing </head> closing
 tag

Missing </h1> closing tag

<p> and <q> are not nested
properly: the </p> tag should
come after the </q> tag.

We have a closing where we
should have a closing tag.

Here’s a closing </p> that doesn’t
match any opening <p> tag.

We mixed up the closing </h2> and </h3> tags on these headings.
We started an list, but it’s
matched with a closing tag.

We’re missing all our
closing tags.

This doesn’t match the opening tag at the start of the list above.
Here’s our missing </head> tag, but we’re missing a closing </html> tag.

120 Chapter 3

exercise solutions

Who am I?

I’m the #1 heading.

I’m all ready to link to another page.

Emphasize text with me.

I’m a list, but I don’t have my affairs in order.

I’m an item that lives inside a list.

I’m a real linebreaker.

Name
Inline or
block?

I keep my list items in order.

I’m all about image.

Quote inside a paragraph with me.

Use me to quote text that stands on its own.

h1 block
a

ul

em

br

li

ol

img

q
blockquote

block

inline

inline

inline
block

block

block

A bunch of HTML elements, in full costume, are playing a party
game “Who am I?” They gave you a clue—you tried to guess
who they were based on what they said.
Tonight’s attendees:
Quite a few of the charming HTML elements you’ve seen so far
showed up for the party!

Stumped?

 is in limbo
land between
block and inline.
It does create
a linebreak,
but doesn't
break a bit
of text into
two separate
blocks, like if
you had two <p>
elements.

We haven’t
talked about
this in detail
yet, but, yes,
 is inline.
Give it some
thought and
we’ll come
back to this in
Chapter 5.

Hmm, it looks
like an inline,
BUT <a> can
wrap block
elements, not
just text. So,
depending on
the context,
<a> can be
either inline or
block.

hmm…

hmm…

you are here 4 121

building blocks

S1 E G W2 A Y 13 P4

I 2 A N5

L6 B7 V B8 U9 R M A S H A V E
I10 N L I N E N P S S
S O S O H I11 M G T
T C C12 R N I
S K V13 O I D G N

Q N E G
U T R

B14 L O C K E L E M E N T S
T N D

O15 R D E R E D T

Across
1. Tony's transportation. [SEGWAY]
8. Famous catchy road signs.

[BURMASHAVE]
10. <q> is this type of element.

[INLINE]
11. Another void element [IMG]
13. Element without content. [VOID]
14. Major building blocks of your

pages. [BLOCKELEMENTS]
15. Use for these kinds of lists.

[ORDERED]

Down
2. Left together in a T-Bird.

[WIVES]
3. Max speed of a Segway. [12MPH]
4. Tony won't be doing any of this.

[PASSING]
5. Putting one element inside another

is called this. [NESTING]
6. Requires two elements. [LISTS]
7. Block element for quotes.

[BLOCKQUOTE]
9. Use for these kinds of lists.

[UNORDERED]
12. Void elements have none.

[CONTENT]

Crack the Location Challenge

There's going to be an evil henchman meetup
next month at my underground lair in
Ðετröì
τ. Come join us.

You could have looked up each entity
or typed them in. In either case, the
answer looks like Detroit!

this is a new chapter 123

Web pages are a dish best served on the Internet.
So far you’ve only created HTML pages that live on your own
computer. You’ve also only linked to pages that are on your own
computer. We’re about to change all that. In this chapter we’ll
encourage you to get those web pages on the Internet where all
your friends, fans, and customers can actually see them. We’ll also
reveal the mysteries of linking to other pages by cracking the code
of the h, t, t, p, :, /, /, w, w, w. So, gather your belongings; our next
stop is Webville.
WARNING: once you get to Webville, you may never come back.
Send us a postcard.

A Trip to Webville

4 getting connected

We’re going
to Webville! We’re

leaving our dusty ol’ local
filesystem behind for good.

124 Chapter 4

getting on the web

Getting Starbuzz (or yourself)
onto the Web
You’re closer to getting Starbuzz—or even better, your own site—
on the Web than you might think. All you need to do is find a

“web hosting company” (we’ll call this a “hosting company” from
now on) to host your pages on their servers, and then copy your
pages from your computer to one of those servers.

Of course it helps to understand how your local folders are going
to “map” to the server’s folders, and once you put your pages
on the server, how you point a browser to them. But we’ll get to
all that. For now, let’s talk about getting you on the Web. Here’s
what you’re going to need to do:

Find yourself an hosting company.

Find a way to get your files from your
computer to a server at the hosting
company (there are a few ways).

1

2

3

Point your friends, family, and fans
to your new site and let the fun
begin.

4

Choose a name for your site (like
www.starbuzzcoffee.com).

We’re going to take you through each of these steps, and even
if you’re not going to set up a website online right now, follow
along because you’ll learn some important things you’ll need
to know later. So, get ready for a quick detour from HTML…

 A Web Detour

Remember me from
way back in Chapter 1? You
were going to get the Starbuzz
website online so our customers
could actually see it.

you are here 4 125

Finding a hosting company
To get your pages on the Web, you need a server that
actually lives on the Web full-time. Your best bet is to find
a hosting company and let them worry about the details
of keeping a server running. No worries, though; finding a
hosting company is fairly straightforward and inexpensive.

Which company? Well, we’d love to sign you up for web
hosting at Head First Hip Web Hosting, Inc., but that
doesn’t really exist. So, you’re going to have to do a little
homework on your own. While finding a company to host
your pages isn’t difficult, it’s kind of like choosing a cable
TV company: there are lots of options and plans. You really
have to shop around for the best deals and for the service
that works for you.

The good news is that you should be able to get started for
almost nothing out of your pocket, and you can always
upgrade later if you need additional features. While we
can’t suggest a particular provider, we can tell you a few
things to look for in a provider, and we also list a few of the
more popular providers at:
http://wickedlysmart.com/hosting-providers/

Relax
You don’t have to

get your pages on

the Web to finish

this book.

While it’s a lot more fun if your pages

are actually on the Web, you can finish

the rest of this book by working on

your own computer.

In either case, follow along for the next

few pages so you know how everything

fits together.

Note from marketing:
if a hosting company
writes a big enough
check, we can!

We can’t tell you everything you need to know
about getting a hosting company (after all,
this book is about HTML and CSS), but we’re
going to give you a good push in the right
direction. Here are some features to think
about while you’re shopping.

 � Technical support: Does the hosting
company have a good system for handling
your technical questions? The better ones
will answer your questions quickly either
over the phone or via email.

 � Data transfer: This is a measure of the
amount of pages and data the hosting
company will let you send to your visitors
during a given month. Most hosting
companies offer reasonable amounts of
data transfer for small sites in their most
basic plans. If you’re creating a site that
you expect will have lots of visitors, you
may want to carefully look into this.

 � Backups: Does the hosting company
regularly make a backup of your pages
and data that can be recovered in the event
that the server has a hardware failure?

 � Domain names: Does the hosting
company include a domain name in its
pricing? More about these on the next page.

 � Reliability: Most hosting companies report
keeping websites up 99% of the time or
better.

 � Goodies: Does your package include
other goodies such as email addresses,
forums, or support for scripting languages
(something that may become important to
you in the future)?

One-minute hosting guide
 A Web Detour

126 Chapter 4

 A Web Detour

HELLO, my name is…
Even if you’ve never heard of a domain name, you’ve seen and used a
zillion of them; you know…google.com, facebook.com, amazon.com,
disney.com, and maybe a few you wouldn’t want us to mention.

So what is a domain name? Just a unique name that is used to locate
your site. Here’s an example:

www.starbuzzcoffee.com

This part is the domain name.

This part is the
name of a specific
server IN the
domain.

There are different domain “endings” for different purposes: .com, .org, .gov, .edu; and also for different countries: .co.uk, .co.jp, and so on. When choosing a domain, pick the one that best fits you.

domain

How can you get a domain name?
The easy answer is to let your hosting company worry about it.
They’ll often throw in your domain name registration with one of
their package deals. However, there are hundreds of companies
that would be glad to help—you can find a list of them at:

As with finding a hosting company, we’re afraid we’ll have to leave
you to find and register your own domain name. You’ll probably
find that going through your hosting company is the easiest way to
get that done.

There are a couple of reasons you should care about domain
names. If you want a unique name for your site, you’re going to
need your own domain name. Domain names are also used to link
your pages to other websites (we’ll get to that in a few pages).

There is one other thing you should know. Domain names are
controlled by a centralized authority (ICANN) to make sure that
only one person at a time uses a domain name. Also (you knew it
was coming), you pay a small annual registration fee to keep your
domain name.

http://www.internic.net/regist.html

After years of
struggling, we finally
have our very own

domain name.

you are here 4 127

DO try this at home
It’s time to seek out a hosting company and grab a domain name for your site. Remember, you can
visit Wickedly Smart for some suggestions and resources. Also remember that you can complete the
book without doing this (even though you really should!).

My Web Hosting Company:

My Domain Name:

Here’s an exercise you really need to go off and do on your own. We’d love
to personally help, but there’s only so much you can ask of book authors (and
feeding the cat while you’re on vacation is probably out too).

 A Web Detour

Q: Why is it called a “domain name”
rather than a “website name”?

A: Because they are different things. If
you look at www.starbuzzcoffee.com, that’s a
website name, but only the “starbuzzcoffee.
com” part is the domain name. You could
also create other websites that use the same
domain name, like corporate.starbuzzcoffee.
com or employees.starbuzzcoffee.com. So
the domain name is something you can use
for a lot of websites.

Q: If I were going to get the domain
name for Starbuzz, wouldn’t I want to
get the name www.starbuzzcoffee.com?
Everyone seems to use websites with the
www at the front.

A: Again, don’t confuse a domain name
with a website name: starbuzzcoffee.com is
a domain name, while www.starbuzzcoffee.
com is the name of a website. Buying a
domain is like buying a piece of land; let’s
say, 100mainstreet.com. On that land,
you can build as many websites as you
like, for example: home.100mainstreet.
com, toolshed.100mainstreet.com, and
outhouse.100mainstreet.com. So www.
starbuzzcoffee.com is just one website in the
starbuzzcoffee.com domain.

Q: What’s so great about a domain
name anyway? Do I really need one? My
hosting company says I can just use their
name, www.dirtcheaphosting.com?

A: If that meets your needs, there is
nothing wrong with using their name. But
(and it’s a big but) here’s the disadvantage:
should you ever want to choose another
hosting company, or should that hosting
company go out of business, then everyone
who knows your site will no longer be able to
easily find it. If, on the other hand, you have
a domain name, you can just take that with
you to your new hosting company (and your
users will never even know you’ve switched).

Q: If domain names are unique, that
means someone might already have mine.
How can I find out?

A: Good question. Most companies that
provide registration services for domain
names allow you to search to see if a name is
taken (kind of like searching for vanity license
plates). You’ll find a list of these companies at
http://www.internic.net/regist.html.

128 Chapter 4

starbuzz

Here’s the new web server. The hosting company has already created a root folder for you, which is where all your pages are going to go.
starbuzz

<html>
.
.
.
<html>

index.html

<html>
.
.
.
<html>

mission.html

Your computer, where the
Starbuzz pages currently live

starbuzz

<html>...</html>

index.html

<html>
.
.
</html>

mission.html

Remember your
Starbuzz pages? There
are two: the main page
(index.html) and the
page that contains
the mission statement
(mission.html).

Congratulations! You’ve got your hosting company
lined up, you’ve found a domain name, and you’ve
got a server all ready for your web pages. (Even
if you don’t, keep following along because this is
important stuff.)

Now what? Well, it’s time to move in, of course.
So, take that For Sale sign down and gather up all
those files; we’re going to get them moved to the
new server. Like any move, the goal is to get things
moved from, say, the kitchen of your old place to
the kitchen of your new place. On the Web, we’re
just worried about getting things from your own root
folder to the root folder on the web server. Let’s get
back to Starbuzz and step through how we do this.
Here’s what things look like now:

Moving in

www.starbuzzcoffee.com

Here’s the new website name. We’re
using the starbuzzcoffee.com
domain (since we beat you to it,
you’ll have to use your own domain
name instead).

 A Web Detour

Here’s the root folder
for Starbuzz.
Here’s the root folder
for Starbuzz.

you are here 4 129

 A Web Detour

Getting your files to the root folder

starbuzz

<html>
.
.
<html>

index.html

<html>
.
.
<html>

mission.html

You’re now one step away from getting Starbuzz Coffee on the Web:
you’ve identified the root folder on your hosting company’s server
and all you need to do is copy your pages over to that folder. But how
do you transfer files to a web server? There are a variety of ways,
but most hosting companies support a method of file transfer called
FTP, which stands for File Transfer Protocol. You’ll find a number
of applications out there that will allow you to transfer your files via
FTP; we’ll take a look at how that works on the next page.

www.starbuzzcoffee.com

Here’s the root
folder on the server.

starbuzz

<html>
.
.
.
<html>

index.html

<html>
.
.
.
<html>

mission.html

The files are sitting
on your computer.

You need to transfer them
to the server, and then
they’ll be “live” on the Web.

Q: Wait a sec, what’s the “root folder”
again?

A: Up until now, the root folder has
just been the top-level folder for your
pages. On the web server, the root folder
becomes even more important because
anything inside the root folder is going to be
accessible on the Web.

Q: My hosting company seems to
have called my root folder

“mydomain_com”. Is that a problem?

A: Not at all. Hosting companies call root
folders lots of different things. The important
thing is that you know where your root folder
is located on the server, and that you can
copy your files to it (we’ll get to that in a sec).

Q: So let me make sure I understand.
We’ve been putting all our pages for the
site in one folder, which we call the root
folder. Now we’re going to copy all that
over to the server’s root folder?

A: Exactly. You’re going to take all the
pages on your own computer, and put
them all inside your site’s root folder on the
hosting company server.

Q: What about subfolders, like the
“images” folder? Do I copy those too?

A: Yes, you’re basically going to replicate
all the pages, files, and folders in your own
root folder onto the server. So if you’ve got
an “images” folder on your computer, you’ll
have one on the server too.

130 Chapter 4

 A Web Detour

As much FTP as you can possibly fit in two pages
Seriously, this really is an HTML and CSS book, but we didn’t want to leave you up a creek
without a paddle. So, here’s a very quick guide to using FTP to get your files on the Web. Keep
in mind your hosting company might have a few suggestions for the best way to transfer your files
to their servers (and since you are paying them, get their help). After the next few pages, we’re off
our detour and back to HTML and CSS until we reach the end of the book (we promise).

We’ll assume you’ve found an FTP application. Some are command-line driven, some have
complete graphical interfaces, and some are even built into applications like Dreamweaver and
Expression Web. They all use the same commands, but with some applications you type them in
yourself, while in others you use a graphical interface. Here’s how FTP works from 10,000 feet:

First, connect to your server using FTP.

Use the “cd” command to change your current directory to
the directory where you want to transfer files.

Transfer your files to the server using the “put” command.

To connect, you’ll need a
username and password supplied
by your hosting company.

www.starbuzzcoffee.com

ftp www.starbuzzcoffee.com

starbuzz

Changes your
directory to
starbuzz.

Transfers a copy of the
“index.html” file into the
current directory on
the server.

cd starbuzz

starbuzz

<html>
.
.
.
<html>

index.html

<html>
.
.
.
<html>

mission.html

starbuzz

www.starbuzzcoffee.com

<html>...</html>

index.html

starbuzz

<html>
.
.
.
<html>

index.html

<html>
.
.
.
<html>

mission.html

put index.html

www.starbuzzcoffee.com

<html>...</html>

index.html
starbuzz

The words “folder”
and “directory” are
interchangeable. Most
FTP applications use
the word “directory.”

In other words, make sure you’re in th
e

folder “starbuzz” o
n the server before

you transfer your f
iles there.

1

2

3

you are here 4 131

File Edit Window Help Jam
%ftp www.starbuzzcoffee.com

Connected to www.starbuzzcoffee.com

Name: headfirst
Password:******
230 User headfirst logged in.

ftp> dir
drwx------ 4096 Sep 5 15:07 starbuzz

ftp> cd starbuzz
CWD command successful

ftp> put index.html
Transfer complete.
ftp> dir
-rw------- 1022 Sep 5 15:07 index.html

ftp> mkdir images
Directory successfully created

ftp> cd images
CWD command successful

ftp> bye

Connect and log in.

Get a directory of
what is there. One

directory
called
starbuzzChange to the

starbuzz directory.
Transfer index.html
there.

Look at the
directory; there’s
index.html.

Make a directory for images, and
then quit using the bye command.

 A Web Detour
You can also make a new directory on the server with
the “mkdir” command.

You can retrieve files too, with the “get” command.

Let’s put all that together. Here’s an example of
FTP being used from a command-line application:

Whether you’re typing in FTP commands
on the command line, or using an FTP
application with a graphical interface, the
commands or operations you can perform
are pretty much the same.

 � dir: get a listing of the current directory.
 � cd: change to another directory. “..”

means up one directory here, too.
 � pwd: display the current directory you’re

in.
 � put <filename>:	transfers	the	specified	
filename	to	the	server.

 � get <filename>:	retrieves	the	specified	
filename	from	the	server,	back	to	your	
computer.

FTP commands

Creates a new
directory called

“images”, inside the
starbuzz directory
on the server.

Transfers a copy of the file from the server back to your computer.

starbuzz

<html>
.
.
.
<html>

index.html

<html>
.
.
.
<html>

mission.html

mkdir images

www.starbuzzcoffee.com

<html>
.
.
</html>

index.html

starbuzz

images

starbuzz

<html>
.
.
.
<html>

index.html

<html>
.
.
.
<html>

mission.html

get index.html

www.starbuzzcoffee.com

<html>
.
.
</html>

index.html

starbuzz
<html>
.
.
</html>

index.html

images

This is just like making a new folder, only you’re doing it on the server, not your own computer.

Most FTP applications come with much friendlier

graphical interfaces, so feel free to
 skip right over

this if you’re using one of those.

4

5

132 Chapter 4

 A Web Detour

Most FTP
applications have a
trial version you can
download to try
before you buy.

Here are a few of the most popular FTP applications for Mac

and Windows:

For Mac OS X:

 � Fetch (http://fetchsoftworks.com/) is one of the most popular

FTP applications for Mac. $

 � Transmit (http://www.panic.com/transmit/). $

 � Cyberduck (http://cyberduck.ch/). FREE

For Windows:

 � Smart FTP (http://www.smartftp.com/download/). $

 � WS_FTP (http://www.wsftple.com/). FREE for the basic

version, $ for the Pro version

 � Cyberduck (http://cyberduck.ch/). FREE

Popular FTP applications

Q: My hosting company told me to use
SFTP, not FTP. What’s the difference?

A: SFTP, or Secure File Transfer Protocol,
is a more secure version of FTP, but works
mostly the same way. Just make sure your
FTP application supports SFTP before you
make a purchase.

Q: So do I edit my files on my
computer and then transfer them each
time I want to update my site?

A: Yes, for small sites, that is normally
the way you do things. Use your computer to
test your changes and make sure things are
working the way you want before transferring
your files to the server. For larger websites,
organizations often create a test site and a
live site so that they can preview changes
on the test site before they are moved to the
live site.

If you’re using a tool like Dreamweaver
or Coda, these tools will allow you to test
your changes on your own computer, and
then when you save your files, they are
automatically transferred to the website.

Q: Can I edit my files directly on the
web server?

A: That usually isn’t a good idea because
your visitors will see all your changes and
errors before you have time to preview and
fix them.

That said, some hosting companies will allow
you to log into the server and make changes
on the server. To do that, you usually need
to know your way around a DOS or Linux
command prompt, depending on what kind
of operating system your server is running.

you are here 4 133

getting connected

starbuzz

<html>
.
.
</html>

index.html

<html>
.
.
</html>

mission.html

www.starbuzzcoffee.com

Back to business…

DO try this at home

It’s another homework assignment for you (check each item as you do it):

 Make sure you know where your root folder is on the server at
your hosting company.

 Figure out the best way (and the best tool to use) to transfer
files	from	your	computer	to	the	server.

 For now, go ahead and transfer the Starbuzz “index.html” and
“mission.html”	files	to	the	root	folder	of	the	server.

End of Web Detour

That’s the end of the detour, and we’re back on the web
superhighway. At this point, you should have the two
Starbuzz pages, “index.html” and “mission.html”, sitting
under your root folder on a server (or if not, you’re at least
following along).

After all this work, wouldn’t it be satisfying to
make your browser retrieve those pages over
the Internet and display them for you? Let’s
figure out the right address to type into your
browser…

http:// www.starbuzzcoffee.com / index.html

Web page addresses start
with http. We’ll look into
what http means in a sec.

Here’s the website name. For the root folder
we just use “/”.

And here’s the
page filename.

134 Chapter 4

uniform resource locators

Come on down to http://www.earlsautos.com

Mainstreet, USA
URL

You’ve probably heard the familiar “h” “t” “t” “p” “colon”
“slash” “slash” a zillion times, but what does it mean? First of
all, the web addresses you type into the browser are called
URLs or Uniform Resource Locators.

If it were up to us, we would have called them “web addresses,”
but no one asked, so we’re stuck with Uniform Resource
Locators. Here’s how to decipher a URL:

A Uniform Resource
Locator (URL) is
a global address
that can be used to
locate anything on
the Web, including
HTML pages, audio,
video, and many other
forms of web content.

In addition to
specifying the location
of the resource, a
URL also names the
protocol that you can
use to retrieve that
resource.

http://www.starbuzzcoffee.com/index.html

The second part is
the website name.
At this point, you
know all about that.

To locate anything on the Web, as long as you know the server
that hosts it, and an absolute path to the resource, you can create
a URL and most likely get a web browser to retrieve it for you
using some protocol—usually HTTP.

The first part of
the URL tells you
the protocol that
needs to be used
to retrieve the
resource.

And the third part is
the absolute path to
the resource from the
root folder.

you are here 4 135

getting connected

What is HTTP?
HTTP is also known as the HyperText Transfer Protocol. In other words,
it’s an agreed-upon method (a protocol) for transferring hypertext
documents around the Web. While “hypertext documents” are usually
just HTML pages, the protocol can also be used to transfer images, or
any other file that a web page might need.

HTTP is a simple request and response protocol. Here’s how it works:

www.starbuzzcoffee.com

So each time you type a URL into your browser’s address bar, the
browser asks the server for the corresponding resource using the HTTP
protocol. If the server finds the resource, it returns it to the browser and
the browser displays it. What happens if the server doesn’t find it?

www.starbuzzcoffee.com

If the resource can’t be found, you’ll get the familiar “404 Error,”
which the server reports back to your browser.

HTTP request: could I please have
the file /index.html?

HTTP response: I found
that file; here it is.

HTTP request: could I please have
the file /hardtofind.html?

HTTP response: error
#404; I can’t find it.

Whatever you do,
don’t pronounce URL as

“Earl,” because that’s my
name. It’s pronounced

U-R-L.

136 Chapter 4

absolute paths to your files

What’s an absolute path?
The last time we talked about paths, we were writing HTML to make links with
the <a> element. The path we’re going to look at now is the absolute path part
of a URL, the last part that comes after the protocol (http) and the website name
(www.starbuzzcoffee.com).

 An absolute path tells the server how to get from your root folder to a particular
page or file. Take Earl’s Autos site, for example. Say you want to look in Earl’s
inventory to see if your new Mini Cooper has come in. To do that, you’ll need
to figure out the absolute path to the file “inventory.html” that is in the “new”
folder. All you have to do is trace through the folders, starting at the root, to get
to the “new” folder where his “inventory.html” file is located. The path is made
up of all the folders you go through to get there.

So, that looks like root (we represent root with a “/”), “cars”, “new”, and finally,
the file itself, “inventory.html”. Here’s how you put that all together:

earls_autos

cars

new used
<html>
.
.
</html>

inventory.html

<html>
.
.
</html>

inventory.html

Earl’s Autos
root folder

cars

new

inventory.html

/cars/new/inventory.html

“/”

Absolute path to
“inventory.html”.

Always start
at the root.

Add on each folder
as you navigate to
the file.

And then add on
the filename.

In between the folder
names, put a “/” to
keep them separate.

/

/

you are here 4 137

getting connected

protocol website name absolute path

://

Q: What is important about the
absolute path?

A: The absolute path is what a server
needs to locate the file you are requesting.
If the server didn’t have an absolute path, it
wouldn’t know where to look.

Q: I feel like I understand the pieces
(protocols, servers, websites, and
absolute paths), but I’m having trouble
connecting them.

A: If you add all those things together,
you have a URL, and with a URL you can
ask a browser to retrieve a page (or other
kinds of resources) from the Web. How? The
protocol part tells the browser the method
it should use to retrieve the resource (in
most cases, this is HTTP). The website
part (which consists of the server name and
the domain name) tells the browser which
computer on the Internet to get the resource
from. And the absolute path tells the server
what page you’re after.

Q: We learned to put relative paths
in the href attribute of our <a> elements.
How can the server find those links if
they aren’t absolute?

A: Wow, great question. When you click
on a link that is relative, behind the scenes
the browser creates an absolute path out of
that relative path and the path of the page
that you click on. So, all the web server ever
sees are absolute paths, thanks to your
browser.

Q: Would it help the browser if I put
absolute paths in my HTML?

A: Ah, another good question, but hold
that thought—we’ll get back to that in a sec.

You’ve waited long enough. It’s time to give your new URL a spin. Before you do, fill
in the blanks below and then type in the URL (like you haven’t already). If you’re
having any problems, this is the time to work with your hosting company to get
things sorted out. If you haven’t set up an hosting company, fill in the blanks for
www.starbuzzcoffee.com, and type the URL into your browser anyway.

138 Chapter 4

easier urls

http://www.starbuzzcoffee.com/

http://www.starbuzzcoffee.com/images/

it will change it to:

http://www.starbuzzcoffee.com

http://www.starbuzzcoffee.com/

Yes, there is. One thing we haven’t talked about is what
happens if a browser asks for a directory rather than a file
from a web server. For instance, a browser might ask for:

or

When a web server receives a request like this, it tries to
locate a default file in that directory. Typically a default file is
called “index.html” or “default.htm” and if the server finds
one of these files, it returns the file to the browser to display.

So, to return a file by default from your root directory (or
any other directory), just name the file “index.html” or

“default.htm”.

The images directory in
the root directory

The root directory itself

Oops, you sure did. When a server receives a request like
yours without the trailing “/” and there is a directory with
that name, then the server will add a trailing slash for you.
So if the server gets a request for:

which will cause the server to look for a default file, and in
the end it will return the file as if you’d originally typed:

http://www.starbuzzcoffee.com/index.html

Remember, when we’re
talking about web servers
or FTP, we usually use the
term “directory” instead
of “folder.” But they’re
really the same thing.

But you need to find out
what your hosting company
wants you to name your
default file, because it
depends on the type of
server they use.

I’d like my visitors to be able to type
“http://www.starbuzzcoffee.com” and
not have to type the “index.html”. Is

there a way to do that?

But I asked about
“http://www.starbuzzcoffee.com”,
which looks a little different. It
doesn’t have the ending “/”.

you are here 4 139

getting connected

www.starbuzzcoffee.com

HTTP request: could I please
have the file “/drinks/”?

1

2

3

4

starbuzz

<html>
.
.
</html>

index.htmldrinks

HTTP response: you asked for
a directory, but I found “index.
html” in that directory, so that’s
what I’m sending back.

5

How default pages work Behind
the Scenes

Server locates a default
file called “index.html” in
the drinks directory.

The server says, “That looks
like a directory; is there a
default file in that directory?”

The user types
http://www.starbuzzcoffee.com/drinks/
into the browser.

Q: So anyone who comes to my site
with the URL http://www.mysite.com is
going to see my “index.html” page?

A: Right. Or, possibly “default.htm”
depending on which kind of web server your
hosting company is using. (Note that “default.
htm” usually has no “l” on the end. This is a
Microsoft web server oddity.)

There are other possible default filenames,
like “index.php”, that come into play if you
start writing scripts to generate your pages.
That’s way beyond this book, but that doesn’t
mean you won’t be doing it in the future.

Q: So when I’m giving someone my
URL, is it better to include the

“index.html” part or not?

A: Not. It’s always better to leave it off.
What if, in the future, you change to another
web server and it uses another default file
name like “default.htm”? Or you start writing
scripts and use the name “index.php”? Then
the URL you originally gave out would no
longer be valid.

140 Chapter 4

practicing with paths

Earl needs a little help with his URLs

earls_autos

<html>
.
.
</html>

index.html

cars

<html>
.
.
</html>

directions.html

new

<html>
.
.
</html>

index.html

<html>
.
.
</html>

inventory.html

used

<html>
.
.
</html>

index.html

<html>
.
.
</html>

inventory.html

images images
minicooper.gif thunderbird.gif

mustang.gifelement.gif

A

E

B

D

C

Earl may know Earl, but he doesn’t know U-R-L. He needs a little help figuring out the
URL for each of the files below, labeled A, B, C, D, and E. On the right, write in the
URL needed to retrieve each corresponding file from www.earlsautos.com.

Earl’s root folder

you are here 4 141

getting connected

E

D

C

B

A

Write the URL here.

142 Chapter 4

linking to other web pages

URLs aren’t just for typing into browsers; you can use them right in your
HTML. And, of course, right on cue, the Starbuzz CEO has a new task
for you: make a link from the main Starbuzz page over to the caffeine
information at http://wickedlysmart.com/buzz. As you can probably
guess, we’re going to throw that URL right into an <a> element. Here’s
how:

How do we link to other websites?

Caffeine Buzz

An everyday, normal,
garden-variety <a> element.

We’ve put a URL in the href. Clicking on the label “Caffeine Buzz”
will retrieve a page from wickedlysmart.com/buzz.

That’s all there is to it. To link to any resource on the Web, all you need is its
Uniform Resource Locator, which goes in the <a> element as the value of the
href attribute. Let’s go ahead and add this in the Starbuzz “index.html” page.

Fantastic! We’re
up and running on the

Web. I’m already hearing
great buzz about our site

in the stores.

By the way, we’ve got a
new caffeine awareness

program; we figure if we’re going to be
pumping people full of caffeine, we want them
to know how to take it to the limit. Can we point
people to the caffeine information over on
wickedlysmart.com/buzz from our site?

you are here 4 143

getting connected

<html>
 <head>
 <title>Starbuzz Coffee</title>
 <style type="text/css">
 body {
 background-color: #d2b48c;
 margin-left: 20%;
 margin-right: 20%;
 border: 2px dotted black;
 padding: 10px 10px 10px 10px;
 font-family: sans-serif;
 }
 </style>
 </head>

 <body>
 <h1>Starbuzz Coffee Beverages</h1>
 <h2>House Blend, $1.49</h2>
 <p>A smooth, mild blend of coffees from Mexico,
 Bolivia and Guatemala.</p>

 <h2>Mocha Cafe Latte, $2.35</h2>
 <p>Espresso, steamed milk and chocolate syrup.</p>

 <h2>Cappuccino, $1.89</h2>
 <p>A mixture of espresso, steamed milk and foam.</p>

 <h2>Chai Tea, $1.85</h2>
 <p>A spicy drink made with black tea, spices,
 milk and honey.
 </p>
 <p>
 Read about our Mission.

 Read the Caffeine Buzz.
 </p>
 </body>
</html>

Open your Starbuzz “index.html” file in the “chapter4/starbuzz” folder, and scan down to
the bottom. Let’s add two new links: a relative link to the mission statement in

“mission.html”, and a link to Caffeine Buzz. Make the changes below, then save and load
your “index.html” file in your browser. Click on the link and enjoy the Caffeine Buzz.

Linking to Caffeine Buzz

Here’s where we’ve added the link to the wickedlysmart.com/buzz page.

Here’s the link to th
e “mission.html”

file. This uses a relative p
ath to

link to “mission.html”.

We added a
 to
put the links on tw

o
different lines.

And we’ve added some structure here by grouping the links and text into a paragraph.

144 Chapter 4

testing those links

And now for the test drive… Here’s the page with the new link, just as we planned.

And when you click on the link,
your browser will make an HTTP
request to wickedlysmart.com/
buzz and then display the result.

Here’s the new link. Notice, we only
linked the words “Caffeine Buzz,”
so it looks a little different from
the other link.

you are here 4 145

getting connected

At Caffeine Buzz, we use
relative links to other pages on

our site, and URLs to link offsite, like
www.caffeineanonymous.com.

Q: It seems like there are two ways
to link to pages now: relative paths
and URLs.

A: Relative paths can only be used
to link to pages within the same website,
while URLs are typically used to link to
other websites.

Q: Wouldn’t it be easier if I just
stuck with URLs for links to my own
pages and outside pages? That would
work, wouldn’t it?

A: Sure, it would work, but there’s
a couple of reasons you don’t want to
go there. One problem is that URLs
are hard to manage when you have a
lot of them in a web page: they’re long,
difficult to edit, and they make HTML
more difficult to read (for you, the page
author).

Also, if you have a site with nothing
but URLs that link to local pages and
you move the site or change its name,
you have to go change all those URLs
to reflect the new location. If you use
relative paths, as long as your pages
stay in the same set of folders—because
the links are all relative—you don’t
have to make any changes to your <a>
element href attributes.

So, use relative links to link to your own
pages in the same site, and URLs to link
to pages at other sites.

Q: Haven’t we seen one other
protocol? I kept seeing “file:///”
before we started using a web server.

A: Yes; good catch. The file protocol
is used when the browser is reading files
right off your computer. For example,
the file URL, “file:///chapter4/starbuzz/
index.html”, tells the browser that the file

“index.html” is located at the path
“/chapter4/starbuzz/”. This path may look
different depending on your operating
system and browser.

One important thing to notice in case
you try to type in a file URL is that the
file URL has three slashes, not two, like
HTTP. Remember it this way: if you take
an HTTP URL and delete the website
name you’ll have three slashes, too.

Q: Are there other protocols?

A: Yes, many browsers can support
retrieval of pages with the FTP protocol,
and there is a mail protocol that can
send data via email. HTTP is the
protocol you’ll be using most of the time.

Q: I’ve seen URLs that look like
this: http://www.mydomain.com:8000/
index.html. Why is there a “:8000” in
there?

A: The “:8000” is an optional “port”
that you can put in an HTTP URL. Think
of a port like this: the website name
is like an address, and the port is like
a mailbox number at an address (say,
in an apartment complex). Normally
everything on the Web is delivered to a
default port (which is 80), but sometimes
web servers are configured to receive
requests at a different port (like 8000).
You’ll most likely see this on test servers.
Regular web servers almost always
accept requests on port 80. If you don’t
specify a port, it defaults to 80.

146 Chapter 4

time for a small mystery

The Case of Relatives and Absolutes

PlanetRobots, Inc., faced with the task of developing a website
for each of its two company divisions—PlanetRobot Home and
PlanetRobot Garden—decided to contract with two firms to get
the work done. RadWebDesign, a seemingly experienced firm, took
on the Home division’s website and proceeded to write the site’s

internal links using only URLs (after all, they’re more complicated,
so they must be better). A less experienced, but well-schooled
firm, CorrectWebDesign, was tasked with PlanetRobot’s Garden
site, and used relative paths for links between all the pages within
the site.

Just as both projects neared completion, PlanetRobots called with
an urgent message: “We’ve been sued for trademark infringement, so
we’re changing our domain name to RobotsRUs. Our new web server
is going to be www.robotsrus.com.” CorrectWebDesign made a
couple of small changes that took all of five minutes and was ready
for the site’s unveiling at the RobotsRUs corporate headquarters.
RadWebDesign, on the other hand, worked until 4 a.m. to fix their
pages but luckily completed the work just in time for the unveiling.
However, during a demo at the unveiling, the horror of horrors
occurred: as the team leader for RadWebDesign demonstrated
the site, he clicked on a link that resulted in a “404—Page Not
Found” error. Displeased, the CEO of RobotsRUs suggested that
RadWebDesign might want to consider changing their name to
BadWebDesign and asked CorrectWebDesign if they were available
to consult on fixing the Home site.

What happened? How did RadWebDesign flub things
up so badly when all that changed was the name of
the web server?

Five-Minute
Mystery

you are here 4 147

getting connected

Can you say “web career”? You’ve certainly delivered everything the
Starbuzz CEO has asked for, and you’ve now got a high-profile website
under your belt (and in your portfolio).

But you’re not going to stop there. You want your websites to have that
professional “fit and finish” that makes good sites into great ones. You’re
going to see lots of ways to give your sites that extra “polish” in the rest of
this book, but let’s start here with a way to improve your links.

Web page fit and finish

Improving accessibility by adding a title to your links

Read the <a href="http://wickedlysmart.com/buzz"

 title="Read all about caffeine on the Buzz">Caffeine Buzz

Wouldn’t it be nice if there were a way to get more information about the link
you’re about to click on? This is especially important for the visually impaired
using screen readers because they often don’t want the entire URL spoken to
them: (“h” “t” “t” p” “:” “slash” “slash” “w” “w” “w” “dot”), and yet the link’s
label usually only gives a limited description, like “Caffeine Buzz.”

The <a> element has an attribute called title just for this purpose. Some
people are confused by this attribute name because there’s an element named
<title> that goes in the <head>. They have the same name because they are
related—it is often suggested that the value of the title attribute be the same
as value of the <title> element of the web page you are linking to. But that
isn’t a requirement and often it makes more sense to provide your own, more
relevant description in the title attribute.

Here’s how you add a title attribute to the <a> element:

The title element has a value that is a textual
description of the page you are linking to.

Now that we’ve got a title attribute, let’s see how your visitors would make use of it. Different
browsers make different use of the title, but many display a tool tip. Add the changes above to
your “index.html” file and reload the page to see how it works in your browser.

148 Chapter 4

best practices for your links

The title test drive…
For most browsers, the title is displayed
as a tool tip when you pass the mouse
over a link. Remember that browsers
for the visually impaired may read the
link title aloud to a visitor.

The title is displayed
as a tool tip in most
browsers. Just pass
your mouse over the
link and hold it there
a second to see the
tool tip.

The Head First Guide to Better Links
Here are a few tips to keep in mind to further improve the fit and finish of your links:
b Keep your link labels concise. Don’t make entire sentences or large pieces of text into links. In general, keep them to a few words. Provide additional information in the title attribute.
b Keep your link labels meaningful. Never use link labels like “click here” or “this page.” Users tend to scan pages for links first, and then read pages second. So, providing meaningful links improves the usability of your page. Test your page by reading just the links on it; do they make sense? Or do you need to read the text around them?

b Avoid placing links right next to each other; users have trouble distinguishing between links that are placed closely together.

you are here 4 149

getting connected

Linking into a page

Open your Starbuzz “index.html” file and add a title to the link to “mission.html” with the text
“Read more about Starbuzz Coffee’s important mission.” Notice that we didn’t make the mission
link’s label as concise as it should be. Shorten the link label to “our Mission.” Check the back of
the chapter for the answer, and test your changes.

Great job on the links.
I’d really like for people to link

directly to the coffee section of
the Buzz site. Is that possible?

So far, whenever you’ve linked to another page, the page loads
and your browser displays it from the top.

But the CEO’s asking you to link into a particular spot in the page:
the Coffee section.

Sound impossible? Come on, this is Head First—we’ve got the
technology. How? Well, we haven’t told you everything about the
<a> element yet. Turns out the <a> element can team up with the
id attribute to take you straight to a specific point in a page.

150 Chapter 4

creating destinations

Using the id attribute to create a destination for a

<h2>Chai Tea, $1.85</h2>

<p>A spicy drink made with black tea, spices, milk
and honey.</p>

Here’s the snippet
from “index.html”
with the Chai heading
and description.

We haven’t talked about the id attribute yet; it’s an important attribute with special
properties, and we’ll get into more detail about other special properties of id later
in the book. For now, think of it as a way of uniquely identifying an element. One
special property that elements with ids get is that you can link to them. Let’s see
how to use the id attribute to create a destination in a page for <a>.

1 Find the location in the page where you’d like to
create a landing spot. This can be any text on the
page, but often is just a heading.

2 Choose an identifier name for the destination, like
“coffee” or “summary” or “bio,” and insert an id
attribute into the opening tag of the element.

Let’s give it a try. Say you want to provide a way to link to the Chai Tea item on
the Starbuzz page. Here’s what it looks like now:

Following the two steps above, we get this:

Add the id to the
opening tag of the
heading.

And we’ll give this
destination the
identifier “chai”.

By giving it an id, you’ve made a
destination out of the Chai Tea
heading in the “index.html” page.

<h2 id="chai">Chai Tea, $1.85</h2>

<p>A spicy drink made with black tea, spices, milk and
honey.</p>

It’s important that your
id be unique. That is, the
“chai” id must be the only
“chai” id in the page!

you are here 4 151

getting connected

How to link to elements with ids

See Chai Tea

You already know how to link to pages using either relative links or URLs. In
either case, to link to a specific destination in a page, just add a # on the end of
your link, followed by the destination identifier. So if you wanted to link from
any Starbuzz Coffee web page to the “chai” destination heading, you’d write
your <a> element link this:

Unfortunately, linking to Chai Tea isn’t very impressive because the
whole page is small enough that it easily fits in the browser. Let’s link
to the Coffee section of http://wickedlysmart.com/buzz instead.
Here’s what you’re going to do:

1 Figure out the id of the Coffee heading.

2 Alter the existing <a> element in the Starbuzz Coffee
“index.html” file to point to the destination heading.

3 Reload your “index.html” page and test out the link.

Finding the destination heading
To find the destination heading, you’re going to have
to look at the wickedlysmart.com/buzz page and
view their HTML. How? Almost all browsers have a

“View Source” option. So, visit the page and when it
is fully loaded, choose the “View Source” option, and
you’ll see the markup for the page.

The main benefit of specif
ic

destinations is to link
 to

locations in long files
 so your

visitors don’t have to
 scroll

through the file look
ing for

the right section.

In most browsers, you can
right-click to “View Source.”

152 Chapter 4

linking to a destination

...
This is similar to the naming problem

with mateine and guaranine.

</p>

<h3 id="Coffee">Coffee</h3>

<p>

<i>All fluid ounces are U.S. fluid ounces.</i>

</p>

Now that you’ve got your hands on their HTML…

Scroll down until you see the Coffee section; it looks like this: Just a small snippet from
the Caffeine Buzz page.

Here’s the Coffee section. You can
see the heading for it along with
the start of the paragraph below.

Ahhh, and here is the destination heading. It has the name “Coffee”.

Reworking the link in “index.html”

Read the <a href="http://wickedlysmart.com/buzz/index.html#Coffee"

 title="Read all about caffeine on the Buzz">Caffeine Buzz

This is a snippet from the
Starbuzz “index.html” file.

Now all you need to do is revisit the link to Caffeine Buzz
and add on the destination anchor name, like this:

Add # along with
the destination id
to your href.

Make this change to your Starbuzz “index.html” file.
Reload and click on the “Caffeine Buzz” link. You
should be taken directly to the Coffee section of
Caffeine Buzz’s front page.

The default file at
wickedlysmart.com/buzz is
index.html. So, we’ll add that
to the URL so we can use it
with the destination id.

you are here 4 153

getting connected

Q: When I have two attributes in an
element, is the order important? For
example, should the title attribute always
come after the href?

A: The order of attributes is not important
in any element (if it were, we’d all have
headaches 24/7). So, use any ordering you
like.

Q: How would I create a tool tip for an
element that’s not an <a>?

A: You can add the title attribute to any
element, so if you want a tool tip on, say, a
heading, you can add a title attribute to your
<h1> opening tag just like we did with <a>.
There are a few elements that use the title
attribute for more than just a tool tip, but the
tool tip is its most common purpose.

Q: Can I add an id attribute to any
element?

A: Yes, you can. You could link into the
middle of a paragraph by adding an id to an
 element, for instance. It’s unlikely that
you’ll often need to do that, but you can do it
if you want.

Q: Could I link to a link by adding
an id attribute to an <a> element in the
destination?

A: Yes!

Q: I noticed in the id names, you
used “chai” with all lowercase letters
and Caffeine Buzz used “Coffee” with an
uppercase “C”. Does it matter?

A: You can use any combination of
upper- and lowercase characters in your
id attributes. Just make sure you are
consistent and always use the same upper-
and lowercase letters in your hrefs and
destination id (which is why it is often easier
to make these names entirely lowercase
every time). If you aren’t consistent, don’t
expect your links to work correctly on every
browser. The most important thing about the
id name you choose is that it must be unique
in your page.

Q: Can I put a link to a destination
from within the same document?

A: Sure. In fact, it is common to define a
destination “top” at the top of a page (say, on
the top heading of the page) and have a link
at the bottom of the page reading “Back to
top.” It is also common in long documents to
have a table of contents for the entire page.
For instance, to link to the “top” destination
heading in the same page, you would write
Back to top.

Q: Why did we need to add the “/index.
html” to the Buzz URL in order to create a
link to the destination heading? Couldn’t
we have just written:
http://wickedlysmart.com/buzz#Coffee?

A: No, that won’t always work because
the browser adds that trailing slash on the
end of the URL for you, which could end
up replacing the id reference. You could,
however, have written:
http://wickedlysmart.com/buzz/#Coffee,
which will produce the same results as the
link we created using “index.html”. This
will come in handy if you don’t know if the
default file is named “index.html”.

Q: If a web page doesn’t provide a
destination and I still need to link to a
specific part of the page, how can I?

A: You can’t. If there is no destination (in
other words, no element with an id), then you
can’t direct the browser to go to a specific
location in a web page. You might try to
contact the page author and ask them to add
one (even better, tell them how!).

Q: Can I have a destination id like
“Jedi Mindtrick” or does an id have to be
only one word?

A: To work consistently with the most
browsers, always start your id with a letter
(A–Z or a–z) and follow it with any letter,
digit, hyphen, underscore, colon, or period.
So, while you can’t use a space and have a
name like “Jedi Mindtrick”, that isn’t much
of a restriction because you can always
have “Jedi-Mindtrick”, “Jedi_Mindtrick”,

“JediMindtrick”, and so on.

Q: How can I tell others what
destinations they can link to?

A: There is no established way of doing
this, and in fact, “View Source” remains the
oldest and best technique for discovering the
destinations you can link to.

Q: Do I always use just words as the
content of an <a> element?

A: No. The <a> element has always been
able to create links from words and images
(inline content), and has recently been
updated (in HTML5) so that you can create
links from block elements, like <p> and
<blockquote> too! So <a> can be used to
create links from all kinds of things.

154 Chapter 4

case solved: it’s all about relative and absolute

The Case of Relatives and Absolutes

So, how did RadWebDesign flub up the demo? Well,
because they used URLs for their hrefs instead of relative
links, they had to edit and change every single link from
http://www.planetrobots.com to http://www.

robotsrus.com. Can you say error-prone? At 3:00
a.m., someone yawned and accidentally typed
http://www.robotsru.com (and as fate has it,
that was the same link that the CEO clicked on at

the demo).

CorrectWebDesign, on the other hand, used relative
paths for all internal links. For example, the link from the
company’s mission statement to the products page,
, works whether
the site is called PlanetRobots or RobotsRUs. So, all
CorrectWebDesign had to do was update the company
name on a few pages.

So RadWebDesign left the demo sleep-deprived and with
a little egg on their face, while CorrectWebDesign left the
meeting with even more business. But the story doesn’t end
there. It turns out that RadWebDesign dropped by a little
coffeehouse/bookstore after the demo and, determined not
to be outdone, picked up a certain book on HTML and
CSS. What happened? Join us in a few chapters for “The
Case of Brute Force Versus Style.”

Five-Minute
Mystery

Solved

Oops…
someone
forgot an “s”
on the end
of the name.

you are here 4 155

getting connected

Linking to a new window
We have another new requirement from the
Starbuzz CEO (there are always new requirements
for websites). What he wants is this: when you click
on the “Caffeine Buzz” link in the Starbuzz Coffee
page, the Starbuzz Coffee page shouldn’t go away.
Instead, a whole new window should open up with
the Caffeine Buzz page in it, like this:

Here’s the main
Starbuzz Coffee page.

What the CEO wants is a whole new window to open when you click on the Caffeine Buzz link.

When the Caffeine
Buzz window pops open,
it will open over the top
of the Starbuzz page,
but the Starbuzz page
will still be there.

Awesome job linking to the Buzz site…I
know I keep asking for changes, but really, this

is the last one. Can you make the Buzz site come
up in a separate window when I click on the link? I
don’t want the Starbuzz page to go away.

156 Chapter 4

targeting windows and tabs

Opening a new window using target
To open a page in a new window, you need to tell the browser the name of the window in
which to open it. If you don’t tell the browser a specific window to use, the browser just opens
the page in the same window. You can tell the browser to use a different window by adding a
target attribute to the <a> element. The value of the target attribute tells the browser the

“target window” for the page. If you use “_blank” for the target, the browser will always open a
new window to display the page. Let’s take a closer look:

<a target="_blank" href="http://wickedlysmart.com/buzz"

 title="Read all about caffeine on the Buzz">Caffeine Buzz

The target attribute tells the browser where to open the web page that is at the link in the href attribute. If there is no target, then the browser opens the link in the same window. If the target is “_blank”, then the browser opens the link in a new window.

Open your Starbuzz “index.
html” file. Add the target
attribute to the <a> tag that
links to the Caffeine Buzz
page. Now give it a try—did
you get a new window?

Can you think of some advantages and
some disadvantages to using the target
attribute to open a page in a new window?

Q: I’m getting a new tab instead of a new window.
Am I doing something wrong?

A: No, you’re not. Most browsers now have a default
setting to open new windows in a tab, rather than a
whole new browser window, because that’s what users
seem to prefer. But a new tab and a new window are
really the same thing; it’s just that the tab shares the
same window border as your original window. If you
want to force a whole new window, most browsers have
a way to do this through the preferences settings.

Q: What if I have more than one <a> element with
a target? If there’s already a “_blank” new window
open, will it open in the window that’s already open?
Or will it open in a new “_blank” window?

A: If you give the name “_blank” to the targets in
all your <a> elements, then each link will open in a
new blank window. However, this is a good question
because it brings up an important point: you don’t
actually have to name your target “_blank”. If you give
it another name, say, “coffee”, then all links with the
target name “coffee” will open in the same window. The
reason is that when you give your target a specific
name, like “coffee”, you are really naming the new
window that will be used to display the page at the link.

“_blank” is a special case that tells the browser to always
use a new window.

you are here 4 157

getting connected

Head First: Hello, Target! We’re so glad you could
join us.

Target: I’m glad to be here. It’s nice to know you’re
still interested in hearing about me.

Head First: Why do you say that?

Target: Well, to be honest, I’m not as popular as I
used to be.

Head First: Why do you think that is?

Target: I think it’s because users want to be in
control of when a window opens. They don’t always
like new windows popping open at unexpected times.

Head First: Well, it can be very confusing—we’ve
had complaints from people who end up with so
many windows on their screens, they can’t find the
original page.

Target: But it’s not like it’s difficult to get rid of the
windows…just click on the little close button. What’s
so hard about that?!

Head First: True, but if users don’t know a new
window has opened, then they can get confused.
Sometimes the new window completely covers the
old window and it’s hard to tell what’s happening.

Target: Well, browsers are getting better at this kind
of thing.

Head First: How so?

Target: Browsers often open external pages in a
new tab, within the same browser window, rather
than opening them in a brand-new window.

Head First: Ah, yes, that would help because it
will be a lot less confusing to see a new tab open,
which the user can visit whenever they want. Unlike
opening a new window, it isn’t so disorienting.

Head First: How does this help with screen readers
though?

Target: You mean browsers used by the visually
impaired?

Head First: Right. Some screen readers play a
sound when a new window opens, but others just
ignore the new window completely, or else they jump
right to the new window immediately. Either way, it’s
gotta be confusing for someone who can’t see what’s
going on. I have no idea how they are handling tabs.

Target: [Sigh] Yeah, we just aren’t there yet in
terms of providing good tools that meet everyone’s
needs, especially the visually impaired. That said, we
seem to need to have the ability to take the user to
pages outside our own site, and many sites do that
by opening another window (or tab, if the browser
supports it).

Head First: Yup. We need you, but we need to get
better about not confusing the user.

Target: I’m hoping the web standard and browser
teams will make all this better.

Head First: I guess for now we’re just going to have
to remember to use you when it’s appropriate, but
to keep in mind those people who might be visually
impaired and not overuse you.

Target: You got it. You’ve helped ease my burden a
bit here; thanks for helping me get the word out!

Head First: Any time, Target!

The Target Attribute Exposed
This week’s interview:
Using target considered bad?

158 Chapter 4

a brain crossover

HTMLcross
Here are some mind benders for your left brain.

Across
1. Web address to a resource.
3. A Mac FTP application.
7. Unique name on the Web.
8. The file you get when you ask for a directory.
10. What are you supposed to send back from
Webville?
12. Top directory of your website.
13. Protocol we’ve been using up until this chapter.
16. People can scan these rather than reading text.
17. Path from the root.
18. Controls domain names.
19. The file you get when you ask for a directory.

Down
2. Top directory of your website.
4. Request/response protocol.
5. Keep your link labels ________.
6. Attribute used to make an element into a
destination.
9. Earl sold these.
11. Always use these kinds of links when linking to
pages on the same server.
14. Wrong way to pronounce URL.
15. Informative caffeine site.

1 2

3 4 5

6 7

8 9

10 11

12

13 14 15 16

17

18

19

Across
1. Web address to a resource.
3. A Mac FTP application.
7. Unique name on the web
8. ________file you get when you ask

for a directory.
10. What are you supposed to send

back from Webville?
12. Top directory of your web site.
13. Protocol we've been using up until

this chapter.
16. People scan these rather than

reading text.
17. Path from the root.
18. Controls domain names.
19. The file you get when you ask for

a directory.

Down
2. Top directory of your Web site.
4. Request/response protocol.
5. Keep your link labels _____.
6. Attribute used to make an element

into a destination.
9. Earl sold these.

11. Always use these kinds of links
when linking to pages on the same
server.

14. Wrong way to pronounce URL
15. Informative caffeine site.

you are here 4 159

getting connected

 � Typically the best way to get on the Web is
to	find	a	hosting	company	to	host	your	web	
pages.

 � A domain name is a unique name, like
amazon.com or starbuzzcoffee.com, that is
used to identify a site.

 � A hosting company can create one or more
web servers in your domain. Servers are
often named “www”.

 � The File Transfer Protocol (FTP) is a
common means of transferring your web
pages and content to a server.

 � FTP applications, like Fetch for Mac or
WS_FTP for Windows, can make using
FTP easier by providing a graphical user
interface.

 � A URL is a Uniform Resource Locator, or
web address, that can be used to identify
any resource on the Web.

 � A typical URL consists of a protocol, a
website name, and an absolute path to the
resource.

 � HTTP is a request and response protocol
used to transfer web pages between a web
server and your browser.

 � The	file	protocol	is	used	by	the	browser	to	
read pages from your computer.

 � An absolute path is the path from the root
folder	to	a	file.

 � “index.html” and “default.htm” are
examples of default pages. If you specify
a	directory	without	a	filename,	the	web	
server will look for a default page to return
to the browser.

 � You can use relative paths or URLs in
your <a> element’s href attribute to link to
other web pages. For other pages in your
site, it’s best to use relative paths, and use
URLs for external links.

 � Use the id attribute to create a destination
in a page. Use # followed by a destination
id to link to that location in a page.

 � To help accessibility, use the title attribute
to provide a description of the link in <a>
elements.

 � Use the target attribute to open a link in
another browser window. Don’t forget that
the target attribute can be problematic
for users on a variety of devices and
alternative browsers.

Wait, wait! Before you
go, we need our logo on
the web page! Hello? Oh, I

guess they’ve already gone on
to Chapter 5…

160 Chapter 4

exercise solutions

protocol website name absolute path
://http www.starbuzzcoffee.com /index.html

Your website name here.

You’ve waited long enough. It’s time to give your new URL a spin.
Before you do, fill in the blanks below and then type in the URL
(like you haven’t already). If you’re having any problems, this is the
time to work with your hosting company to get things sorted out. If
you haven’t set up an hosting company, fill in the blanks for www.
starbuzzcoffee.com, and type the URL into your browser anyway.

U1 R2 L
O
O

F3 E T C H4 C5

I6 T D7 O M A I N
D8 E F A U L T N C9

P10 O S T C A R11 D A
I E R12 O O T

F13 I L E14 B15 S L16 I N K S
A17 B S O L U T E A
R Z T
L Z I18 C A N N

V
D19 E F A U L T

Across
1. Web address to a resource. [URL]
3. A Mac FTP application. [FETCH]
7. Unique name on the web [DOMAIN]

8. ________file you get when you ask
for a directory. [DEFAULT]

10. What are you supposed to send
back from Webville? [POSTCARD]

12. Top directory of your web site.
[ROOT]

13. Protocol we've been using up until
this chapter. [FILE]

16. People scan these rather than
reading text. [LINKS]

17. Path from the root. [ABSOLUTE]
18. Controls domain names. [ICANN]
19. The file you get when you ask for

a directory. [DEFAULT]

Down
2. Top directory of your Web site.

[ROOT]
4. Request/response protocol. [HTTP]
5. Keep your link labels _____.

[CONCISE]
6. Attribute used to make an element

into a destination. [ID]
9. Earl sold these. [CARS]

11. Always use these kinds of links
when linking to pages on the same
server. [RELATIVE]

14. Wrong way to pronounce URL
[EARL]

15. Informative caffeine site. [BUZZ]

you are here 4 161

getting connected

http://www.earlsautos.com/directions.html

http://www.earlsautos.com/cars/used/inventory.html

http://www.earlsautos.com/cars/new/images/minicooper.gif

http://www.earlsautos.com/cars/new/

Earl needs a little help with his URLs

E

D

C

B

A
http://www.earlsautos.com/

Solution

162 Chapter 4

exercise solutions

<html>
 <head>
 <title>Starbuzz Coffee</title>
 <style type="text/css">
 body {
 background-color: #d2b48c;
 margin-left: 20%;
 margin-right: 20%;
 border: 1px dotted gray;
 padding: 10px 10px 10px 10px;
 font-family: sans-serif;
 }
 </style>
 </head>
 <body>
 <h1>Starbuzz Coffee Beverages</h1>
 <h2>House Blend, $1.49</h2>
 <p>A smooth, mild blend of coffees from Mexico,
 Bolivia and Guatemala.</p>

 <h2>Mocha Cafe Latte, $2.35</h2>
 <p>Espresso, steamed milk and chocolate syrup.</p>

 <h2>Cappuccino, $1.89</h2>
 <p>A mixture of espresso, steamed milk and foam.</p>

 <h2>Chai Tea, $1.85</h2>
 <p>A spicy drink made with black tea, spices,
 milk and honey.
 </p>
 <p>
 Read about <a href="mission.html"
 title="Read more about Starbuzz Coffee's important mission">our Mission.

 Read the <a href="http://wickedlysmart.com/buzz"
 title="Read all about caffeine on the Buzz">Caffeine Buzz.
 </p>
 </body>
</html>

Move the “Read about” outside the <a> element.

Add a title
attribute
to the
mission link.

Add a title to the link to “mission.html” with the text “Read more about Starbuzz Coffee’s
important mission.” Notice that we didn’t make the mission link’s label as concise as it should be.
Shorten the link label to “our Mission”. Here’s the solution; did you test your changes?

this is a new chapter 163

Smile and say “cheese.” Actually, smile and say “gif,” “jpg,” or
“png”—these are going to be your choices when “developing pictures” for the Web. In this

chapter you’re going to learn all about adding your first media type to your pages: images.

Got some digital photos you need to get online? No problem. Got a logo you need to get on

your page? Got it covered. But before we get into all that, don’t you still need to be formally

introduced to the element? So sorry, we weren’t being rude; we just never saw the

“right opening.” To make up for it, here’s an entire chapter devoted to . By the end of

the chapter you’re going to know all the ins and outs of how to use the element and its

attributes. You’re also going to see exactly how this little element causes the browser to do extra

work to retrieve and display your images.

Meeting the Media
5 adding images to your pages

164 Chapter 5

images in your html

How the browser works with images
Browsers handle elements a little differently than other elements.
Take an element like an <h1> or a <p>. When the browser sees these
tags in a page, all it needs to do is display them. Pretty simple. But when
a browser sees an element, something very different happens: the
browser has to retrieve the image before it can be displayed in a page.

The best way to understand this is to look at an example. Let’s take a
quick look back at the elixirs page from the Head First Lounge, which
has four elements:

<html>
 <head>
 <title>Head First Lounge Elixirs</title>
 </head>
 <body>
 <h1>Our Elixirs</h1>
 <h2>Green Tea Cooler</h2>
 <p>

 Chock full of vitamins and minerals, this elixir combines
 the healthful benefits of green tea with a twist of chamomile
 blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p>

 Combining raspberry juice with lemon grass, citrus peel and
 rosehips, this icy drink will make your mind feel clear and
 crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p>

 Blueberries and cherry essence mixed into a base of
 elderflower herb tea will put you in a relaxed state of
 bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>

 Wake up to the flavors of cranberry and hibiscus in
 this vitamin C rich elixir.
 </p>
 <p>
 Back to the Lounge
 </p>
 </body>
</html>

We’ve got four images
in this HTML.

you are here 4 165

adding images to your pages

Browser

Browser

<html>

 <head>

 <title>Head
First Lounge
Elixirs</title>

 </head>

 ...

<html>

 <head>

<title>Another
Page</title>

 </head>

 ...

<html>

 <head>

<title>Another
Page</title>

 </head>

 ...

<html>

 <head>

 <title>Head First
Lounge Elixirs</title>

 </head>

 <body>

 <h1>Our Elixirs</h1>

…

</html> Web Server

First, the browser retrieves the file “elixir.html” from the server.

Behind
the Scenes

“I

 ne
ed t

he HTML file ‘elixir.html’”

“ Found it; here ya go”

Next the browser reads the “elixir.html” file, displays it, and sees it
has four images to retrieve. So, it needs to get each one from the web
server, starting with “green.jpg”.

<html>

 <head>

 <title>Head
First Lounge
Elixirs</title>

 </head>

 ...

<html>

 <head>

<title>Another
Page</title>

 </head>

 ...

<html>

 <head>

<title>Another
Page</title>

 </head>

 ...

Web Server

“O

h,
it lo

oks lik
e I need green.jpg, too”

“ Found it; here ya go”

Now let’s take a look behind the scenes and step through how the
browser retrieves and displays this page when it is requested from
http://wickedlysmart.com/lounge/:

The HTML page is retrieved, but the browser
still needs to get the images.

Empty browser window; nothing retrieved yet.
1

2

166 Chapter 5

how browsers load images

Having just retrieved “green.jpg”, the browser displays it and then
moves on to the next image: “lightblue.jpg”.

<html>

 <head>

 <title>Head
First Lounge
Elixirs</title>

 </head>

 ...

<html>

 <head>

 <title>Another
Page</title>

 </head>

 ...

<html>

 <head>

 <title>

 My Playlist

 </title>

 ...

Web Server

“O
h,
 it

 loo
ks lik

e I need lightblue.jpg, too”

“ Found it; here ya go”

Now the browser has retrieved “lightblue.jpg”, so it displays that
image and then moves on to the next image, “blue.jpg”. This process
continues for each image in the page.

<html>

 <head>

 <title>Head
First Lounge
Elixirs</title>

 </head>

 ...

<html>

 <head>

 <title>Another
Page</title>

 </head>

 ...

<html>

 <head>

 <title>

 My Playlist

 </title>

 ...

Web Server

“O

h,
it lo

oks l
ike I need blue.jpg, too”

“ Found it; here ya go”

Browser

Browser

“green.jpg”
displayed.

“lightblue.jpg”
displayed.

3

4

you are here 4 167

adding images to your pages

How images work
Images are just images, right? Well, actually there are a zillion formats for
images out there in the world, all with their own strengths and weaknesses.
But luckily, only three of those formats are commonly used on the Web:
JPEG, PNG, and GIF. The only tricky part is deciding which to use when.

So, what are the differences among JPEG, PNG, and GIF?

Use JPEG for photos and
complex graphics

Use PNG or GIF for images with solid
colors, logos, and geometric shapes.

Works best for continuous
tone images, like
photographs.

Can represent images with
up to 16 million different
colors.

Is a “lossy” format
because to reduce the file
size, it throws away some
information about the
image.

Does not support
transparency.
Files are smaller for more
efficient web pages.
No support for animation.

Like PNG, GIF works best
for images with a few solid
colors, and images with
lines, like logos, clip art,
and small text in images.

GIF can represent images
with up to 256 different
colors.

GIF is also a “lossless”
format.

GIF also supports
transparency, but allows
only one color to be set to

“transparent.”
Files tend to be larger than
their JPEG equivalents.
Supports animation.

PNG works best for images with a
few solid colors, and images with
lines, like logos, clip art, and small
text in images.

PNG can represent images with
millions of different colors. PNG
comes in three flavors: PNG-8,
PNG-24, and PNG-32, depending
on how many colors you need to
represent.

PNG compresses the file to reduce
its size, but doesn’t throw anything
way. So, it is a “lossless” format.

Allows colors to be set to
“transparent” so that anything
underneath the image will show
through.
Files tend to be larger than their
JPEG equivalents, but can be
smaller or larger than GIF depending
on the number of colors used.

168 Chapter 5

differences between gif, jpg, and png

Head First: Well, hello everyone. I think this might be
the first time we’ve interviewed three interviewees at once!

JPEG: Hey there, and hey to GIF and PNG.

GIF: I’m not sure why I have to share the interview
couch with these other bozos. Everyone knows GIF is the
original image format of the Web.

JPEG: Ha! As soon as you get good at representing
complex images, like photos, maybe then people will take
you seriously again, but I’m not sure how you’re going to
do that with only 256 colors.

Head First: PNG, help us out here? You’ve been kind of
quiet so far…

PNG: Yeah, it’s easy to be quiet when you’re #1. I can
represent complex images like JPEG and I’m also lossless
like GIF. Truly the best of both worlds.

Head First: Lossless?

PNG: Right; when you store an image in a lossless
format, you don’t lose any of the information, or detail, in
the image.

GIF: Me too! I’m lossless too, you know.

Head First: Well, why would anyone want a lossy
format?

JPEG: There’s always a tradeoff. Sometimes what you
want is a fairly small file you can download fast, but that
has great quality. We don’t always need perfect quality.
People are very happy with JPEG images.

PNG: Sure, sure, but have you ever looked at lines, logos,
small text, solid colors? They don’t look so great with
JPEG.

Head First: Wait a sec, JPEG raises an interesting issue.
So GIF and PNG, are your file sizes large?

PNG: I’ll admit my file sizes can be on the large size
sometimes, but I provide three formats so you can right-
size your images: PNG-8, PNG-24, and PNG-32.

GIF: Sounds like complexity to me—more things for your
users to remember.

PNG: Well, GIF, wouldn’t the world be nice if we could
fit all images into 256 colors? But we can’t.

GIF: Hey, for line drawings, figures, that kind of thing, it’s
often very easy to fit images into 8 bits, and for that I look
great.

JPEG: Ha, when is the last time you saw a photo stored
in GIF? People have figured out your downsides, GIF.

GIF: Did I mention I can be transparent? You can take
parts of me, and anything behind me shows right through.

PNG: You can’t compete with me on that one, GIF. I can
set any number of colors to transparent; you are limited to
one color.

GIF: One color or many, who cares? One is all you need.

PNG: Not if you want to have anti-aliased transparent
areas in your image!

GIF: Huh?

PNG: Yeah, you know, because I allow more than one
color to be transparent, so you can have nice soft edges
around the transparent areas.

Head First: That sounds like a nice feature. Can you do
that, JPEG?

JPEG: No, but I’m not too worried about it; there aren’t
many photos you’d want to do that to. That’s for logos.

PNG: Hmmm, I’m seeing my transparency used all over
the Web.

Head First: Well, I’ll have to think twice before doing a
three-person interview again, but it sounds to me like GIF
and PNG, you’re great for logos and text images; JPEG,
you’re great for photos; and PNG, you come in handy if
we want transparency as well as lots of colors. Bye!

PNG, JPEG, GIF: Wait, no, hold on!!!

This week’s interview: Image formats mix it up

Would the real image format please stand up?

you are here 4 169

adding images to your pages

Congratulations: you’ve been elected “Grand Image Format Chooser” of the day. For
each image below, choose the format that would best represent it for the Web.

JPEG or PNG or GIF

?Which Image Format?

✹

✷

✻❄

170 Chapter 5

introducing the element

You already know
 is a void
element.

And now for the formal introduction: meet
the element.

We’ve held off on the introductions long enough. As you can see,
there’s more to dealing with images than just the HTML markup.
Anyway, enough of that for now…it’s time to meet the
element.

Let’s start by taking a closer look at the element (although you’ve
probably already picked up on most of how works by now):

The src attribute specifies the location
of an image file to be included in the
display of the web page.

Here’s the element.

The element is an inline
element. It doesn’t cause
linebreaks to be inserted before
or after it.

So, is that it? Not quite. There are a couple of attributes you’ll
want to know about. And of course you’ll also want to know how
to use the element to reference images on the Web that
aren’t on your own site. But really, you already know the basics of
using the element.

Let’s work through a few of the finer points of using the
element, and then put all this knowledge to work.

Uh, I don’t mean to be
rude, but we’re on the eighth

page of the IMAGES chapter and
you STILL haven’t introduced me!
JPEG, PNG, GIF, blah, blah, blah…
could you get on with it?

you are here 4 171

adding images to your pages

img : it’s not just relative links anymore

The src attribute can be used for more than just relative links; you can also put a URL in
your src attribute. Images are stored on web servers right alongside HTML pages, so every
image on the Web has its own URL, just like web pages do.

You’ll generally want to use a URL for an image if you’re pointing to an image at a different
website (remember, for links and images on the same site, it’s better to use relative paths).

Here’s how you link to an image using a URL:

To include an image using its URL,
just put the whole URL of the
image in the src attribute.

The URL is the path to the image,
so the filename at the end is always
the filename of an image. There’s
no such thing as a default image like
there is for web pages.

Here’s a “Sharpen your pencil” that is actually about pencils (oh, and images too). This exercise
involves a bit of trivia: Given a typical, brand-new pencil, if you drew one continuous line with it,
using the entire pencil up, how long would the line be?

What’s that got to do with images? To find the answer, you’re going to have to write some HTML.
The answer to this trivia is contained in the image that is at the URL http://wickedlysmart.com/
hfhtmlcss/trivia/pencil.png. Your job is to add an image to this HTML and retrieve the answer:

<html>

 <head>

 <title>Sharpen your pencil trivia</title>

 </head>

 <body>

 <p>How long a line can you draw with the typical pencil?</p>

 <p>

 </p>

 </body>

</html>

Put your image element here.

172 Chapter 5

questions about images

Q: So the element is quite
simple—it just provides a way to specify
the location of the image that needs to be
displayed in the page?

A: Yes, that about sums it up. We’ll talk
about a couple of attributes you can add to
the element. Later, you’ll see a number of
ways to use CSS to change the visual style
of an image.

But there’s a lot to know about the images
themselves. What are the different image
formats for? When should I use one over the
other? How big should they be? How do I
prepare images for use in a web page?

Q: We’ve learned that void elements
are elements without content or a closing
tag. We’ve also learned that the
element is void. But doesn’t it have
content (the image)?

A: Well, to be more precise, a void
element is an element that doesn’t have any
content in the HTML page to put the opening
and closing tags around. True, an image
is content, but the element refers to
the image. The image isn’t part of the HTML
page itself. Instead, the image replaces the
 element when the browser displays
the page. And remember, HTML pages
are purely text, so the image could never
be directly part of the page. It’s always a
separate thing.

Q: Back to the example of a web page
loading with images…when I load a web
page, I don’t see the images loading one
after the other. Why?

A: Browsers often retrieve the images
concurrently. That is, the browser makes
requests for multiple images at the same
time. Given the speed of computers and
networks, this all happens fast enough that
you usually see a page display along with its
images.

Q: If I see an image on a web page,
how do I determine its URL so that I can
link to it?

A: Most browsers allow you to right-click
on an image, which brings up a contextual
menu with some choices. In these choices,
you should see “Copy Image Address” or

“Copy Image Link,” which will place the
URL in your clipboard. Another way to find
the URL is to right-click and choose “Open
Image in New Window,” which will open
the image in a browser window. Then you
can get the URL of the image from the
browser’s address bar. A last option is to use
your browser’s View Source menu option
and look through the HTML. Keep in mind,
though, you might find a relative link to the
image, so you’ll have to “reconstruct” the
URL using the website domain name and the
path of the image.

Q: What makes a JPEG photo better
than a GIF or PNG photo, or a GIF or PNG
logo better than a JPEG logo?

A: “Better” is usually defined as some
combination of image quality and file size.
A JPEG photo will usually be much smaller
than an equivalent-quality PNG or GIF, while
a PNG or GIF logo will usually look better,
and may have a smaller file size than in
JPEG format.

Q: How do I choose between GIF and
PNG? It seems like they are very similar.

A: PNG is the latest newcomer in graphic
formats, and an interesting one because it
can support both photos as well as logos.
It also has more advanced transparency
features than GIF. PNG is supported by all
major browsers now, which wasn’t true just a
few years ago.

To choose between GIF and PNG, there
are a few things to consider. First, PNG
has slightly better compression than GIF,
so for an image with the same number of
colors (i.e., up to 256), your PNG file may
be smaller. If you need more colors than
GIF can offer, and JPEG isn’t an option (for
instance, you need transparency), PNG is
definitely the way to go. However, if you
need animation, then you should go with GIF
because GIF is the only widely supported
format that supports animation.

you are here 4 173

adding images to your pages

In this exercise you’re going to see how your browser handles the alt attribute when you have
a broken image. The theory goes that if an image can’t be found, the alt attribute is displayed
instead. But not all browsers implement this, so your results may vary. Here’s what you need to do:

Always provide an alternative
One thing you can be sure of on the Web is that you never know exactly which
browsers and devices will be used to view your pages. Visitors are likely to show
up with mobile devices, screen readers for the visually impaired, browsers that are
running over very slow Internet connections (and may retrieve only the text, not
the images, of a site), cell phones, Internet-enabled T-shirts…Who knows?

But in the middle of all this uncertainty, you can be prepared. Even if a browser can’t
display the images on your page, there is an alternative. You can give the visitor
some indication of what information is in the image using the element’s
alt attribute. Here’s how it works:

Take your HTML from the previous exercise.

Update the image element to include the alt attribute
“The typical new pencil can draw a line 35 miles long.”

Change the image name of “pencil.png” to “broken.png”. This
image doesn’t actually exist, so you’ll get a broken image.

Reload the page in your browser.

Finally, download a couple of other browsers and give this a
try. Did you get different results?

1

2

3

4

5

Look at the end of the chapter to see our results…

If the image can’t be displayed, then this
text is used in its place. It’s like if you
were reading the web page over the phone
to someone, the alt text is what you’d say
in place of the image.

The alt attribute requires a bit of
text that describes the image.

For instance, you could try Firefox
(http://www.mozilla.org/) or Opera
(http://www.opera.com/).

<img src="http://wickedlysmart.com/hfhtmlcss/trivia/pencil.png"

 alt="The typical new pencil can draw a line 35 miles long.">

174 Chapter 5

 element attributes

Sizing up your images
There’s one last attribute of the element you should know about—
actually, they’re a pair of attributes: width and height. You can use these
attributes to tell the browser, up front, the size of an image in your page.

Here’s how you use width and height:

The height attribute
tells the browser how
tall the image should
appear in the page.

The width attribute tells the
browser how wide the image
should appear in the page.

Both width and height are specified using the number of pixels. If
you’re not familiar with pixels, we’ll go into what they are in a little
more detail later in this chapter. You can add width and height
attributes to any image; if you don’t, the browser will automatically
determine the size of the image before displaying it in the page.

Q: Why would I ever use these
attributes if the browser just figures it out
anyway?

A:On many browsers, if you supply the
width and height in your HTML, then the
browser can get a head start laying out the
page before displaying it. If you don’t, the
browser often has to readjust the page
layout after it knows the size of an image.
Remember, the browser downloads images
after it downloads the HTML file and begins
to display the page. The browser can’t know
the size of the images before it downloads
them unless you tell it.

You can also supply width and height values
that are larger or smaller than the size of the
image and the browser will scale the image

to fit those dimensions. Many people do
this when they need to display an existing
image at a size that is larger or smaller than
its original dimensions. As you’ll see later,
however, there are many reasons not to use
width and height for this purpose.

Q: Do I have to use these attributes
in pairs? Can I just specify a width or a
height?

A: You can, but if you’re going to go to
the trouble to tell the browser one dimension,
supplying the second dimension is about the
same amount of work (and there isn’t a lot
to be gained by supplying just a width or a
height unless you’re scaling the image to a
particular width or height).

Q: We’ve said many times that we
are supposed to use HTML for structure,
and not for presentation. These feel like
presentation attributes. Am I wrong?

A: It depends on how you are using these
attributes. If you’re setting the image width
and height to the correct dimensions, then it
is really just informational. However, if you
are using the width and height to resize the
image in the browser, then you are using
these attributes for presentation. In that case,
it’s probably better to consider using CSS to
achieve the same result.

you are here 4 175

adding images to your pages

Creating the ultimate fan site: myPod
iPod owners love their iPods, and they take them
everywhere. Imagine creating a new site called “myPod”
to display pictures of your friends and their iPods from
their favorite locations, all around the world.

What do you need to get started? Just some knowledge
of HTML, some images, and a love for your iPod.

We’ve already written some of the HTML for this site,
but we haven’t added the images yet—that’s where you
come in. But before you get to the images, let’s get things
set up; look for the “chapter5” folder in the sample
source for the book. There you’ll find a folder named

“mypod”. Open the “mypod” folder, and here’s what
you’ll see inside:

We’ve already written some
of the HTML for the
myPod site. You’ll find it
in the “index.html” file.

You’ll find this in the
chapter5 folder.

Here’s the first iPod
image: an image of Seattle.

We’re going to use the
photos folder to hold
the images for the site.

mypod
<html>

.

.

.

</html>

photos

seattle.jpg

index.html

My iPod in Seattle! You can see
the Space Needle. You can’t see
the 628 coffee shops.

Note: you’ll find a couple of other fold
ers

in “mypod” too, but ignore those for now.

iPhones are fine too!

176 Chapter 5

a fan site for ipods

<html>
 <head>
 <title>myPod</title>
 <style type="text/css">
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>

 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod from the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Video, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we'll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see the
 Space Needle. You can't see the 628 coffee shops.
 </p>

 </body>
</html>

Open up the file “index.html”, and you’ll see work has already
begun on myPod. Here’s the HTML so far:

This HTML should look familiar, as we’re using
the basic building blocks: <h1>, <h2>, and <p>.

Check out myPod’s “index.html” file

And here’s how it looks
in the browser. Not bad,
but we need images.

We threw in some Ready Bake CSS here.
Just type this in for now. All it does is give

the page a light green background. We’ll be
getting to CSS in a few chapters, promise!

you are here 4 177

adding images to your pages

<html>
 <head>
 <title>myPod</title>
 <style type="text/css">
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>

 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod from, the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Video, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we'll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see the
 Space Needle. You can't see the 628 coffee shops.
 </p>

 <p>

 </p>

 </body>
</html>

We need an
image right here.

This is where you need to
place the first photo.

As you can see, a lot of the HTML is already written to
get myPod up and running. All you need to do is add
an element for each photo you want to include.
There’s one photo so far, “seattle_video.jpg”, so go
ahead and add an element to place that image in the
page below. When you’ve finished, load the page in
your browser and check out the view of Seattle.

Your element is
going to go right here.
Your element is
going to go right here.

178 Chapter 5

the image is too big

Whoa! The image is way too large
Well, the image is right there where it should be, but that is one
large image. Then again, most of the images that come from digital
cameras these days are that large (or larger). Should we just leave
the image like it is and let visitors use the scroll bar? You’re going to
see there are a couple of reasons why that’s a bad idea.

Let’s take a look at the image and the browser and see just how bad
this situation is…

The image is 1,200 pixels wide.

We could use the scroll
bars to see the rest of
the image, but wouldn’t
it be better if we could
fit this image into the
browser window?

The browser
window is about
800 pixels wide.

Here’s the full size of the image,
which is bigger than the size of the
browser window…much bigger.

Here’s our browser. It’s about the
size of the typical browser window.

And here’s the “seattle.jpg” image you
added to “index.html.”

 If the image
fits nicely in
your browser
window, then
your browser

may have an “auto image
resize” option turned on.
More on this in just a sec…

you are here 4 179

adding images to your pages

Q: What’s wrong with having the user just use the scroll bar
to see the image?

A: In general, web pages with large images are hard to use. Not
only can your visitors not see the entire image at once, but also using
scroll bars is cumbersome. Large images also require more data to
be transferred between the server and your browser, which takes a
lot of time and may result in your page being very slow to display,
particularly for users on dial-up or other slow connections.

Q: Why can’t I just use the width and height attributes to
resize the images on the page?

A: Because the browser still has to retrieve the entire large image
before it scales it down to fit your page.

Q: You said the browser window is 800 pixels wide; what
exactly does that mean?

A: Your computer’s display is made up of millions of dots called
pixels. If you look very closely at your display, you’ll see them:

And while screen sizes and resolutions tend to vary (some people
have small monitors, some large), most people typically set their
browsers to somewhere between 800 and 1,280 pixels wide. So,
around 800 pixels is a good rule of thumb for the maximum width of
your images (and your web pages too, but we’ll get to that in a later
chapter).

Q: How do the number of pixels relate to the size of the
image on the screen?

A: A good rule of thumb is 96 pixels to every inch, although with
today’s high resolution monitors and retinal displays, it can go higher.
We used to use a standard of 72 pixels per inch (ppi), but to handle
modern displays, the concept of a CSS pixel has been created. The
CSS pixel is 1/96 of an inch (96 ppi). So for a 3” wide × 3” high image,
you’d use 96 (pixels) × 3 (inches) = 288 × 288 pixels.

Q: Well, how large should I make my images then?

A: In general, you want to keep the width of your image to less
than 800 pixels wide. Of course, you may want your images to be
significantly smaller (or somewhat larger) depending on what you’re
using the image for. What if the image is a logo for your page? You
probably want that small, but still readable. After all, you don’t need
a logo the width of the entire web page. Logos tend to run between
100 and 200 pixels wide. So, ultimately, the answer to your question
depends on the design of your page. For photos—which you usually
do want to view as large as possible—you may want to have a page
of small thumbnail images that load quickly, and then allow the user
to click on each thumbnail to see a larger version of the image. We’ll
get to all that shortly.

Q: I think my browser automatically resized the image of
Seattle, because it fits perfectly in the window. Why did my
browser do this?

A: Some browsers have a feature that resizes any image that
doesn’t fit within the width of your browser. But many browsers don’t
do this, so you don’t want to rely on it. Even if every browser did have
this feature, you’d still be transferring a lot more data than necessary
between the server and browser, which would make your page slow
to load and less usable. And keep in mind that an increasing number
of people are viewing web pages on mobile devices, and large
images will impact data usage on these devices.

Here’s a lot
of pixels that
together make up
the upper part of
the right wing of
the butterfly.

This image is made up
of thousands of pixels
when it’s displayed on a
computer screen.

Here’s one pixel.

180 Chapter 5

making your images the correct size

Resize the image to fit in the browser
Let’s fix up this image so it fits the browser page better. Right now, this image
is 1,200 pixels wide by 800 pixels tall (you’ll see how to determine that in a sec).
Because we want the width of the image to be less than 800 pixels, we need to
decide on a width that would fit our myPod web page nicely. The whole point
of myPod is viewing photos of iPods in their surroundings, so we probably
want to have reasonably large images. If we reduce this image size by one-half
to 600 pixels wide by 400 pixels high, that will still take up most of the browser
width, while still allowing for a little space on the sides. Sound good? Let’s get
this image resized…

1,200 pixels

600 pixels

800
pixels

400
pixels

We need to resize the
image so that it’s still
reasonably large, but
is less than 800 pixels
wide. 600 seems like a
nice width that happens
to be one-half the
current size.

Open the image using a photo editing application.

Reduce the image size by one-half (to 600 pixels by 400 pixels).

Save the image as “seattle_video_med.jpg”.

Here’s what you’re going to do:

1

2

3

you are here 4 181

adding images to your pages

Good question—there are lots of photo editing
applications on the market (some freely available),
which are all quite similar. We’re going to use
Adobe’s Photoshop Elements to resize the images,
because it is one of the most popular photo
editing applications, and is available on both
Windows and the Macintosh. If you own another
photo editing application, you should have no
problem following along and translating each
editing task to your own application.

If you don’t yet have a photo editing application,
you might first check to see if there was one
included with your operating system. If you have
a Mac, you can use iPhoto to edit your photos. If
you’re a Windows user, you might find Microsoft’s
Digital Image Suite on your computer already. If
you still don’t have an editing application available
to you, follow along and for each step, you can use
the HTML and images included in the example
folders.If you don’t have Adobe Photoshop Elements, but you’d like to follow along for the rest of the chapter with it, you can download it and try it out free for 30 days. The URL to download it is: http://www.adobe.com/go/tryphotoshop_elements.

Before we get started,
which photo editing application

are we going to use to resize
the image? I have Photoshop

Elements. Will that work?

http://www.adobe.com/go/tryphotoshop_elements
http://www.adobe.com/go/tryphotoshop_elements

182 Chapter 5

using a photo editor

First, start your photo editing application and open the “seattle_video.
jpg” image. In Photoshop Elements, you’ll want to choose the “Open…”
menu option under the File menu, which will open the Open dialog box.
You’re going to use this to navigate to the image “seattle_video.jpg” in the

“chapter5/mypod/photos” folder.

Here’s the Open dialog box.
Use this dialog to navigate to
the “seattle_video.jpg” image.

When you’ve located the
“seattle_video.jpg” image,
click Open to open it.

Open the image

As you navigate through folders, you’ll see a
preview of the images in those folders here.

you are here 4 183

adding images to your pages

Now that “seattle_video.jpg” is open, we’re going to use the “Save for Web”
dialog to both resize the image and save it. To get to that dialog box, just
choose the “Save for Web” menu option from the File menu.

Resizing the image

Here’s the “seattle_video.jpg”

image in Photoshop Elements.
To resize the image, choose “Save
for Web” from the File menu.

184 Chapter 5

resizing an image

After you’ve selected the “Save for Web” menu option, you should see the
dialog box below; let’s get acquainted with it before we use it.

This dialog lets you do all kinds of interesting things. For
now, we’re going to focus on how to use it to resize and save
images in JPEG format for web pages.

Here’s where you choose the format to save your file. Currently it’s set to save as GIF; we’re going to change this to JPEG in a couple of pages…

Here’s the
current size
of the image:
1,200 pixels by
800 pixels.

This split window shows you your original image on the left, and the image in the format you’re saving it for the Web on the right. Currently this is showing GIF format; we’ll be changing this to JPEG in an upcoming step.

Resizing the image, continued…

you are here 4 185

adding images to your pages

(1) Change the image size here
to a width of 600 and a height
of 400. If you have Constrain
Proportions checked, then all you
have to do is type the new width,
600, and Elements will change the
height to 400 for you.

(2) Once the width and
height are set correctly,
click Apply to let
Elements know this is
the size you want.

As you can see, there’s a lot of functionality built into this
dialog. Let’s put it to good use. To resize the image, you
need to change the width to 600 pixels and the height
to 400 pixels. Then you need to save the image in JPEG
format. Let’s start with the resize…

This will not affect the original image,
just the file you’re going to save.

You must click Apply to reduce the image size; otherwise,
the image will be saved at its original width and height.

186 Chapter 5

using save for web

You’ve resized—now save

(1) Now that the image size is set,
you just need to choose the format
for the image. Currently it’s set to
save as GIF; change this to JPEG
like we’ve done here.

(3) That’s it;
click OK and
go to the next page.

(2) Set the quality to Medium.

Now you just need to save the image in the correct format
(JPEG). To do that, you need to choose JPEG format and set
the quality to Medium. We’ll talk more about quality in a sec.

Notice that when you clicked Apply
in the previous step, the image was
resized and redisplayed.

you are here 4 187

adding images to your pages

Q: Can you say more about the quality
setting in “Save for Web”?

A: The JPEG format allows you to specify
the level of image quality you need. The
lower the quality, the smaller the file size. If
you look at the preview pane in the “Save
for Web” dialog, you can see both the quality
and file size change as you change the
quality settings.

The best way to get a feel for quality
settings and the various image formats is to
experiment with them on your own images.
You’ll soon figure out what quality levels
are needed for your image and the type of
web page you’re developing. You’ll also get
to know when to use JPEG versus other
formats.

Q: What is the number 30 next to the
Quality label in the JPEG Options dialog
box?

A: The number 30 is what Photoshop
Elements considers Medium quality. JPEG
actually uses a scale of 1–100%, and Low,
Medium, High, etc. are just preset values
that many photo editing applications use.

Q: Couldn’t I just use the
element’s width and height attributes to
resize my image instead?

A: You could use the width and height
attributes to resize an image, but that’s not
a good idea. Why? Because if you do that,
you’re still downloading the full-size image,
and making the browser do the work to
resize the image (just like when you have
the auto resize option on in browsers that
support that feature). The width and height
attributes are really there to help the browser
figure out how much space to reserve for the
image; if you use them, they should match
the actual width and height of the image.

After you click OK, you’ll get a Save dialog. Save the image as
“seattle_video_med.jpg” so you don’t overwrite the original photo.

Save the image

Change the filename to seattle_video_med.jpg.

Make sure you’re
saving the image in the

“mypod/photos” folder.

Click Save to
save the image.

Image format
Image size (1K equals 1,024 bytes in size).

Photoshop Elements even
tells you how long it would
take to transfer over a
dial-up modem to a browser.

Notice that you’re changing the filename from “seattle_video.jpg” to “seattle_video_med.jpg”. Why? People usually like to save their original, high-quality, big photos for printing, and put smaller versions on the Web. If you saved this as “seattle_video.jpg”, you’d be losing the original photo!

188 Chapter 5

test driving your image size

Now the image fits nicely in the
browser window. And it’s a smaller
file size too, which will help the
page load more quickly.

Fixing up the myPod HTML
Once you’ve saved the image, you can close Photoshop Elements. Now all you need to do is change the
myPod “index.html” page to include the new version of the photo, “seattle_video_med.jpg”. Here’s a
snippet of the “index.html” file, showing only the parts you need to change.

<html>
 <head>
 <title>myPod</title>
 <style type="text/css">
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>
 .
 .
 .
 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see the
 Space Needle. You can't see the 628 coffee shops.
 </p>

 <p>

 </p>

 </body>
</html>

And now for the test drive…

All you need to do is change the
filename in the element to
the name of the image you just
made: “seattle_video_med.jpg”.

The rest of the HTML goes here. You’ve
already got it in your “index.html” file.

Go ahead and make the changes, save them, and
reload “index.html” in your browser. Things
should look much better. Now the image is sized
just right to give your visitors a good view—without
overwhelming them with a large photo.

you are here 4 189

adding images to your pages

Format Quality Size Time Winner

PNG-24

JPEG

JPEG

JPEG

JPEG

GIF

N/A

Maximum

High

Medium

Low

N/A

Your task this time: open the file “chapter5/testimage/eye.jpg” in Photoshop Elements. Open the “Save for Web”
dialog and fill in the blanks below by choosing each quality setting for JPEG (Low, Medium, High, etc.), as well as
PNG-24 and GIF. You’ll find this information in the preview pane below the image. Once you’ve finished, determine
which setting makes the most sense for this image. Format

Size of image
Time to transfer over
dial-up modem

?Which Image Format?

✹
✷

✻❄ 2

Try PNG-8 too!

190 Chapter 5

adding more images

A new batch of photos has arrived for myPod: three more from Seattle and a few from
a friend in Britain. The photos have already been resized to less than 800 pixels wide.
Add the elements for them (you’ll find the images already in the photos folder):

More photos for myPod

Feel free to add some of your
own photos here as well. Just
remember to resize them first.

<html>
 <head>
 <title>myPod</title>
 <style type="text/css">
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>
 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod, from the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Video, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we'll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see the
 Space Needle. You can't see the 628 coffee shops.
 </p>

 <p>

 </p>

 <h2>Birmingham, England</h2>
 <p>
 Here are some iPod photos around Birmingham. We've obviously got some
 passionate folks over here who love their iPods. Check out the classic
 red British telephone box!
 </p>

 <p>

 </p>
 </body>
</html>

Let’s keep all the Seattle photos together.

Same with the
Birmingham photos…

you are here 4 191

adding images to your pages

Taking myPod for another test drive
At this point we don’t need to tell you to reload the page
in your browser; we’re sure you’re way ahead of us. Wow,
what a difference a few images make, don’t you think?
This page is starting to look downright interesting.

But that doesn’t mean you’re there yet. While you’ve got a
great set of images on the page, and even though you’ve
already resized them, the images are still quite large. Not
only is the page going to load more and more slowly as
you add more images, but also the user has to do a lot
of scrolling to see them all. Wouldn’t it be better if users
could see a small “thumbnail” image for each photo, and
then click on the thumbnail to see the larger image?

And here’s what the page looks like now, close up.

Here’s what
the whole page
looks like now,
with all the
images.

192 Chapter 5

using thumbnail images

Reworking the site to use thumbnails

Create a new directory for the thumbnails.

Resize each photo to 150 by 100 pixels and save it in a
“thumbnail” folder.

Set the src of each element in “index.html”
to the thumbnail version of the photo.

Add a link from each thumbnail to a new page
containing the larger photo.

1

2

3

4

You’re now going to make this page more usable by substituting a
smaller image (which we call a thumbnail) for each photo, and then you’ll
create a link from that thumbnail to each of the larger photos. Here’s
how you’re going to do this, one step at a time:

Create a new directory for thumbnails

To keep things organized, create a separate folder for the thumbnail
images. Otherwise, you’ll end up with a folder of larger images
and small thumbnails all lumped together, which could get quite
cluttered after you’ve added a significant number of photos.

Create a folder called “thumbnails” under the “mypod” folder. If
you’re working from the book example files, you’ll find this folder
already in there.

Create a new folder
called “thumbnails” in
the “mypod” folder.

mypod
<html>

.

.

.

</html>

photos

index.html

thumbnails

you are here 4 193

adding images to your pages

Create the thumbnails
You’ve got a place to put your thumbnails, so let’s create them. Start by
opening “seattle_video_med.jpg” with your photo editing application.
You’re going to resize it to 150 by 100 pixels using the same method you
used to create the 600 by 400 version:

With the image resized, choose OK and save it as the same name but
in the thumbnail folder. Be careful: if you save it to the “photos” folder,
you’ll be replacing the larger image.

Now, repeat this for each photo in your “photos” folder.

If you’re working with the example
files, you’ll find the thumbnails
already in the “thumbnails” folder,
so you don’t have to do every one
(after all, you’re learning HTML,
not batch photo processing).

Good catch. Because these images are taller than
they are wide, we have two choices: we can switch
the dimensions and make them 100 by 150, or we
can crop each image and make a 150-by-100-pixel
thumbnail from it. We’re going to make ours 100
by 150; feel free to crop them and create 150-by-
100-pixel images if you’d like to explore how to do
that in your photo editing application.

In Photoshop Elements,
choose the “Save for Web”
menu option.

Then change the width
to 150 and the height to
100 and click Apply. Finally,

click OK.

Don’t forget to change the
format to JPEG, Medium quality.

What about the photos
from Birmingham—they are

taller than they are wide. Does
150x100 make sense?

194 Chapter 5

using a thumbnails folder

Now you just need to change the HTML so that the elements get their images from
the “thumbnails” folder rather than the “photos” folder. And because you’re currently using
relative paths like “photos/seattle_video_med.jpg”, that’s going to be simple: for each
element, all you need to do is change the folder from “photos” to “thumbnails”.

Rework the HTML to use the thumbnails

All you need to do is change the
folder from “photos” to “thumbnails”.

<html>
 <head>
 <title>myPod</title>
 <style type="text/css">
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>
 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod, from the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Video, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we'll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see the
 Space Needle. You can't see the 628 coffee shops.
 </p>

 <p>

 </p>

 <h2>Birmingham, England</h2>
 <p>
 Here are some iPod photos around Birmingham. We've obviously got some
 passionate folks over here who love their iPods. Check out the classic
 red British telephone box!
 </p>

 <p>

 </p>
 </body>
</html>

you are here 4 195

adding images to your pages

Take myPod for another test drive
Ahhh…much better. Visitors can see all the
available pictures at a glance. They can also tell
which photos go with each city more easily. Now we
need to find a way to link from each thumbnail to
the corresponding large image.

In other words, we didn’t “pull anything.” Because is
displayed as an inline element, it doesn’t cause linebreaks to be
inserted before and after the element is displayed. So, if there
are several images together in your HTML, the browser will fit
them side by side if the browser window is wide enough.

The reason the larger photos weren’t side by side is because the
browser didn’t have room to display them next to each other.
Instead, it displayed them on top of each other. A browser
always displays vertical space before and after a block element,
and if you look back at the screenshots, you’ll see the images
are right on top of each other with no space in between. That’s
another sign is an inline element.

Right, but remember the element is
an inline element.

Wait a sec, don’t
you think you’re pulling a

fast one? The images used to
be on top of each other; now

they’re side by side.

196 Chapter 5

linking to the thumbnails

Turning the thumbnails into links
You’re almost there. Now you just need to create a link from each
thumbnail image to its larger version. Here’s how this is going to work:

A visitor sees a thumbnail she likes,
say the downtown iPod thumbnail…

…the visitor clicks
on the thumbnail…

…and displays it.

The visitor can click
the back button
to get back to the
myPod page.

To do this you need two things:

Let’s create the pages first, and then we’ll come back and
finish off the links.

…the browser retrieves a new page with the large image…

A page to display each photo along with a
heading that describes its content.

A link from each thumbnail in “index.html”
to its corresponding photo page.

1

2

ClickClick

you are here 4 197

adding images to your pages

Create individual pages for the photos

<html>
 <head>
 <title>myPod: Seattle Ferry</title>
 <style type="text/css"> body { background-color: #eaf3da; } </style>
 </head>
 <body>
 <h1>Seattle Ferry</h1>
 <p>

 </p>
 </body>
</html>

As you’ve probably
guessed, we’ve already
created this folder for
you in the book examples.

mypod
<html>

.

.

.

</html>

photos

index.html

 htmlthumbnails

First, create a new folder called “html” to hold these individual pages, just
below the “mypod” folder:

Now we’re going to create one HTML file for each photo. If the photo is called
“seattle_video_med.jpg”, then let’s call the HTML file “seattle_video_med.html”
just to be consistent. In each HTML file, we’ll have a heading that describes
the photo, followed by the photo. Here’s the HTML for the first Seattle photo.
All the other pages will follow this same format:

Title for the page. This
should describe the photo.

Here’s our ready bake CSS again, just to keep the page a consistent color.

Here’s the element that points to the large
“seattle_video_med.jpg” photo. Let’s also give the
image a descriptive alt attribute.

Notice that we need to use “..” in the relative path
because the “html” folder is a sibling of the “photos”
folder, so we have to go up one folder and then down
into “photos” when using relative links.

Here we give the page a descriptive heading.

198 Chapter 5

linking with <a> and

So, how do I make links out of images?

You’ve got your large photos, your smaller thumbnails, and even a set of
HTML pages for displaying individual photos. Now you need to put it all
together and get those thumbnails in “index.html” linked to the pages in the

“html” folder. But how?

To link an image, you put the element inside an <a> element, like this:

Once you’ve placed the element into an <a> element, the
browser treats the image as a clickable link. When you click the
image, the browser will retrieve the page in the href.

If you look in the “html” folder in the chapter example files, you’ll find all of the single photo
pages already there, except one—the page for “seattle_downtown.jpg”. Create a page called

“seattle_downtown.html” in the “html” folder, and test it out. Get this working before you move on.
You’ll find the answer in the back of the chapter if you have any problems.

 <img src="thumbnails/seattle_downtown.jpg"

 alt="An iPod in downtown Seattle, WA">

The element is nested
directly inside the <a> element.

Here’s the element for
the “seattle_downtown.jpg”
thumbnail, just as it is in the
“index.html” file.

And here’s an <a>
opening tag just before
the element.

The href is linked to the new HTML page for the photo, “seattle_downtown.html”, which is in the “html” directory.

Here’s the
closing <a> tag.

you are here 4 199

adding images to your pages

Add the image links to “index.html”
This is the last step. You just need to wrap <a> elements around each thumbnail’s
element in your “index.html” file. Remember, the href of each <a> element should link to
the page containing the large version of the image in the “html” folder. Make sure that your
links, thumbnails, and pages all match up correctly.

Here’s the complete “index.html” file. All you need to do is add the HTML marked in gray.

<html>
 <head>
 <title>myPod</title>
 <style type="text/css">
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>

 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod, from the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Video, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we'll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see the
 Space Needle. You can't see the 628 coffee shops.
 </p>

 <p>

200 Chapter 5

adding the links to the thumbnails

Add these <a> elements to your “index.html” file.
Save, load into your browser, and check out myPod!

Q: When we put an <a> element around text, we get an
underline. Why don’t we get something equivalent with images?

A: Actually, Internet Explorer puts a border around an image
to show it is linked. (Our browser, Safari, doesn’t do that.) If your
browser puts a border around or a line under your linked images, and
you don’t like it, hold on a few more chapters and you’ll learn how to
change that with CSS. Also notice that when you pass your mouse
over an image, your cursor will change to indicate you can click on
the linked image. In most cases your users will know an image is
linked by context and by the mouse cursor, even if there’s no border.

Q: Can’t we just link to the JPEG image directly without all
those HTML pages? I thought the browser was smart enough to
display images by themselves.

A: You’re right; you could link directly to the image, like this: If you did that and
clicked on the link, the browser would display the image by itself
on a blank page. In general, though, linking directly to an image is
considered bad form, because you usually want to provide some
context for the images you are displaying.

 </p>

 <h2>Birmingham, England</h2>
 <p>
 Here are some iPod photos around Birmingham. We've obviously got some
 passionate folks over here who love their iPods. Check out the classic
 red British telephone box!
 </p>

 <p>

 </p>
 </body>
</html>

For each thumbnail image, wrap an <a> element around it.
Just be careful to get the right href in each link!

you are here 4 201

adding images to your pages

Great idea. In fact, we’ve got a myPod
logo all ready to go.

Take another look in the folder
“chapter5/mypod”, and you’ll find a
folder called “logo”. In that folder you’ll
find a file called “mypod.psd”. The

“.psd” means that the file has been saved
in the Photoshop format, a common
format for image editing software. But
Photoshop format files are meant for
processing digital images, not for web
pages, so we’ll have to do some work to
get a “web ready” image from it.

Many photo editing applications understand .psd files, so even if you don’t have Photoshop Elements, follow along for the next few pages. If your application can’t open the “.psd” file, you’ll find the images from each step in the “logo” folder.

The myPod web page
is looking awesome! I think
you should add a logo to the

page—that would add a great
finishing touch.

202 Chapter 5

adding a logo

If your photo editing
application won’t open
the file, follow along
anyway—the same
principles apply for
other formats as well.

You’ll find the “logo” folder in
the “chapter5/mypod” folder.

Open the myPod logo
Let’s check out the myPod logo: open up the file “mypod.psd”
in the “chapter5/mypod/logo” folder in Photoshop Elements:

Nice logo; it’s got some typography combined with two circles,
one gray and one white (obviously inspired by the click-wheel
controls on the classic iPod).

But what is that checkered pattern in the background? That’s
the way most photo editing applications show you areas that
are transparent. Keep all that in mind as we choose a graphic
format for the logo…

A closer look…

Whenever you see this
checkered pattern,
that indicates a
transparent area in
the image.

you are here 4 203

adding images to your pages

What format should we use?

Remember, use this pull-down menu to set the format. We’re going to set the format to PNG-8 to save the logo.

You already know that we have a couple of options in deciding how to save this
image: we could use JPEG, PNG, or GIF. This logo uses only three colors, text,
and some geometric shapes. From what you’ve learned about the two formats,
you’re probably leaning toward PNG or GIF. Either would be fine; the PNG
might be a slightly smaller file at the same quality, so we’ll go with PNG. And,
because we only have three colors, we’ll be safe using PNG-8 which allows only
256 colors, so using this format will reduce the file size even more.

So, go ahead and choose the “Save for Web” option under the File menu, and
then choose PNG-8 in the format drop-down. You’ll see we have a few more
options. Let’s take a look…

When you set the
format to PNG, this
Transparency checkbox
appears. By default,
it’s checked. Do we
want a transparent
background?

Try unchecking the Transparency checkbox:
you’ll see the PNG preview at the bottom
change to a white background.

Also note the
Matte option.
This is related to
transparency, as
you’ll see in a sec.

Here’s where Photoshop
Elements shows you the
number of colors being
used to save the PNG.
It’s already set to the
maximum for PNG-8,
256. We’ll leave it there.

204 Chapter 5

choosing transparency

To be transparent, or not to be transparent?
That is the question…
The myPod logo is going to be placed on a light green
background, so you might think that transparency is going
to be a good thing, right? Well, let’s compare how the logo
looks using a few options in the “Save for Web” dialog:

Without transparency, th
ings

look pretty bad. Clearly, a white

background isn’t going t
o work

on a green web page. (It might,

however, work just fine on a

white web page).

Here’s what we get if we check
Transparency and save. Better…
but what’s that white “halo”
around the letters in the logo?

Ah, now we’re talking; this looks great. For this
version, we told Photoshop Elements to create the
matte around the text using a green background.
How? We’ll show you next.

The halos happen because the
photo editing application creates
a “matte” to soften the text’s
edges against the background
color. When it did that for this
logo, however, it assumed it was
softening the edges against a
white background.

Here’s the logo saved in three different ways and
displayed on a web page with a green background.

you are here 4 205

adding images to your pages

You know you want a transparent PNG version of the logo,
and you also know we’ll need to use a matte to prevent the
halos around the text. Let’s check out the PNG panel of the

“Save for Web” dialog.

Save the transparent PNG

You know to
choose PNG-8
already.

And check
Transparency.

Now we need to take a look at
the Matte option.

The Matte option allows you to select the color for the matte
around the text. And we want that to be the color of the web
page background. The Matte option

supplies the color for
softening the edges of
the text. Since the web
page is a light green, we
want to use the same
color for the matte.

Choose “Other…” since
our color isn’t listed.

206 Chapter 5

what is the background color?

<style type="text/css">

 body { background-color: #eaf3da; }

</style>

What? You can’t tell that’s light
green? For now, take our word for
it; we’ll come back to this in a few
chapters and explain all about colors.

The Color Picker gives you a lot
of different ways to choose the
matte color. We just want to
set it to the background color
of the web page, and we already
know that is eaf3da…

When you click on the Matte pull-down menu and choose the “Other…” menu
option, Photoshop Elements will bring up the Color Picker dialog.

Wait, what is the color of the web page background?

Here’s the background
color right here.

Remember that Ready Bake CSS in the myPod “index.html” file?
That CSS is what sets the background color of the page to light
green. And that’s where we can get the color:

Set the matte color

…which is going to go right here.

you are here 4 207

adding images to your pages

Type these letters in right here.
This box is designed specifically for
colors written in the web format.
You can type the letters in upper-
or lowercase; it doesn’t matter.

Set the matte color, continued

Once you’ve typed the color
into the Color Picker, click
OK and it will apply the
change to the logo.

Now, when you look close up at the
logo, you’ll see the matte matches the
green color in the background of the
myPod web page.

Go ahead and enter the color, “eaf3da”, into the “Color Picker” dialog box.
You’ll see the color change to the background color of the myPod page.

Check out the logo with a matte
Now take a close look at the logo again in the preview pane. You’ll see Photoshop
Elements has added a light green matte around the hard edges, which will give the
myPod logo text a softer, more polished look when the logo is in the web page.

208 Chapter 5

saving the logo

Save the logo
Okay you’ve made all the adjustments you need to in the “Save for Web”
dialog, so go ahead and click OK to save the image as “mypod.png”.

Elements will automatically
change the extension of your
filename to “.png”. Save the
image as “mypod.png” in the
“logo” folder.

Add the logo to the myPod web page

Add the logo image at the top of the myPod web page. Remember to use the correct relative path for the logo, in the “logo” folder, and add an alt attribute that describes the image.

<html>
 <head>
 <title>myPod</title>
 <style type="text/css">
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>
 <p>

 </p>

 <h1>Welcome to myPod</h1>
 .
 .
 .
 </body>
</html>

Rest of “index.html” HTML here…

Now all you need to do is add the logo to the myPod web page.
We’ll add it to the top so it appears above the website description
and iPod images. That way, it’s the first thing your visitors see
when they come to your myPod page.

you are here 4 209

adding images to your pages

And it works—all that

hard work paid off. You

have a great-looking logo

on your myPod web page.

And now for the final test drive
Let’s test this puppy! Reload the web page in the browser
and see how your myPod transparent PNG logo works.

Excellent work.
The logo looks great.
You’ve got a kick-ass
myPod website here!

210 Chapter 5

questions about images

Q: Do I really need to know all this stuff about image formats
to write good web pages?

A: No. You can build great web pages without any images.
However, images are a big part of the Web, so some knowledge of
how images work can really help. Sometimes just an image or two
makes the difference between a good page and a great one. There’s
a lot to know about images, but it’s easy to learn as you go.

Q: Why does the text need its edges softened?

A: Check out the two versions of the myPod logo below:

You’ll see the top version has very hard, jagged edges and is less
readable. This is the way text is displayed by default on a computer
screen. The second version has had its edges softened using a
technique called anti-aliasing. Words that are anti-aliased on a
computer screen are more readable and more pleasant to the eye.

Q: So where does the matte come in?

A: The process of anti-aliasing softens the edges relative to the
background color. If you put the bottom version of the logo (from the
previous Q&A) against a colored background, you’d see it has white
edges in it. The Matte option in Photoshop Elements allows you to
specify the color of the background that the text will be placed on, so
when the text is softened it is done so against that color.

Q: Does this technique just work for text?

A: No, it works for any lines in your graphics that might result in
“jaggies.” Check out the circle in the myPod logo; it was matted too.

Q: Why can’t I just make the logo background color solid and
match the color to the web page?

A: You could do that too, but there is one disadvantage: if there
are other things in your web page that are showing through the
transparency, then they won’t be seen with the solid color version.
You haven’t seen any examples of this yet, but when we get into CSS,
you will.

Q: What if I change my background color after I make the
matted version?

A: A slight variation in your background color probably wouldn’t be
noticeable; however, if you change the color dramatically, you’ll have
to recreate the PNG with a new matte color.

If you're placing a
transparent image in
your web page, make
sure the matte color of
the image matches the
background color of your
web page.

You can use PNG or
GIF format for your
transparent image.

you are here 4 211

adding images to your pages

 � Use the element to place images in your
web page.

 � Browsers treat elements a little differently
than other HTML elements; after reading the
HTML page, the browser retrieves each image
from the web server and displays it.

 � If you have more than a couple of large images
on a web page, you can make your web page
more usable and faster to download by creating
thumbnails—small images that the user can click
on to see the large version of the image.

 � The element is an inline element, which
means that the browser doesn’t put a linebreak
before or after an image.

 � The src attribute is how you specify the location
of the image file. You can include images from
your own site using a relative path in the src
attribute, or images from other sites using a URL.

 � The alt attribute of an element is a
meaningful description of the image. It is
displayed in some browsers if the image can’t
be located, and is used by screen readers to
describe the image for the visually impaired.

 � A width of less than 800 pixels is a good rule
of thumb for the size of photo images in a web
page. Most photo images that are created by
digital cameras are too large for web pages, so
you’ll need to resize them.

 � Photoshop Elements is one of many photo
editing applications you can use to resize your
images. You can also use one of many free
online tools to resize images. Just search for
“free online image editor.”

 � Images that are too large for the browser make
web pages difficult to use and slow to download
and display.

 � JPEG, PNG, and GIF are the three formats
for images that are widely supported by web
browsers.

 � The JPEG format is best for photographs and
other complex images.

 � The GIF or PNG format is best for logos and
other simple graphics with solid colors, lines, or
text.

 � JPEG images can be compressed at a variety
of different qualities, so you can choose the best
balance of quality and file size for your needs.

 � The GIF and PNG image formats allow you to
make an image with a transparent background. If
you put an image with a transparent background
in a web page, what’s behind the image, such
as the background color of the page, will show
through the transparent parts of the image.

 � GIF and PNG are lossless formats, which means
the file sizes are likely to be larger than JPEG.

 � PNG has better transparency control than GIF,
and allows many more colors than GIF, which is
limited to 256.

 � PNG has three different size options: PNG-24
(supports millions of colors), PNG-16 (supports
thousands of colors), and PNG-8 (supports 256
colors), depending on your needs.

 � In Photoshop Elements, use the Matte color
menu in the “Save for Web” dialog to choose
the right color for softening the edges of your
transparent PNG or GIF image.

 � Images can be used as links to other web pages.
To create a link from an image, use the
element as the content of an <a> element,
and put the link in the href attribute of the <a>
element.

212 Chapter 5

more left brain goodness

HTMLcross
It’s time to give your right brain another break and put that left brain
to work. All these words are HTML-related and from this chapter.

Across
1. With JPEG, you can control this.
3. Most web browsers retrieve images this way.
5. PNG and GIF have it, JPEG doesn’t.
8. Miles you can draw with a pencil.
10. Web server makes a request for each one of
these.
11. Smallest element on a screen.
12. You used Photoshop Elements to do this to
images.
13. Lovable MP3 player.
14. Better for solid colors, lines, and small text.

Down
2. The alt attribute improves this.
4. Small images on a page.
6. Technique for softening edges of text.
7. The larger the image, the ______ it takes to
transfer it.
9. Better for photos with continuous tones.

1 2

3 4

5 6

7

8

9 10

11 12

13

14

Across
1. With JPEG you can control this.
3. Most web browsers retrieve images

this way.
5. PNG and GIF have it, JPEG

doesn't.
8. Miles you can draw with a pencil.

10. Web server makes a request for
each one of these.

11. Smallest element on a screen.
12. You used Photoshop Elements to do

this to images.
13. Lovable MP3 player.
14. Better for solid colors, lines, and

small text.

Down
2. The alt attribute improves this.
4. Small images on a page.
6. Technique for softening edges of

text.
7. The larger the image, the ______ it

takes to transfer it.
9. Better for photos with continous

tones.

you are here 4 213

adding images to your pages

Congratulations: you’ve been elected “Grand Image Format Chooser” of the day. For
each image below, choose the format that would best represent it for the Web.

JPEG or PNG or GIF

?Which Image Format?

✹

✷

✻❄

This image is borderline. It has
lots of continuous colors (JPEG),
but is also slightly geometric
(GIF) and you may want to
use this in a way that requires
transparency (PNG).

A photo with lots of continuous
shades of gray.

Only a couple of colors with some
text; definitely a PNG or GIF.
No transparency? PNG might
yield a smaller file.

A photo with lots of colors;
definitely a JPEG or PNG;
and if you want a transparent
background, go with PNG.

Just a simple black and white
icon; a PNG or GIF. If you need
transparency, you might want
anti-aliasing on the edges, and PNG
would be better for that.

Solution

214 Chapter 5

exercise solutions

Here’s a “Sharpen your pencil” that is actually about pencils (oh, and images too).
This exercise involves a bit of trivia: Given a typical, brand-new pencil, if you drew
one continuous line with it, using the entire pencil up, how long would the line be?

What’s that got to do with images? To find the answer, you had to write some
HTML. The answer to this trivia is contained in the image that is at the URL: http://
wickedlysmart.com/hfhtmlcss/trivia/pencil.png. Your job was to add an image to
this HTML and retrieve the answer. Here’s our solution.

<html>

 <head>

 <title>Sharpen your pencil trivia</title>

 </head>

 <body>

 <p>How long a line can you draw with the typical pencil?</p>

 <p>

 </p>

 </body>

</html> If you put the image here, you can see
the answer when you load the page.

Source: http://www.papermate.com

you are here 4 215

adding images to your pages

Here are the results of having a broken image in a few different browsers. In most cases, the
browser is able to use the extra alt attribute information to improve what is displayed. Why do
we care? After all, this is an error in a web page; we should just fix it, right? Well, in the real
world, things are often not ideal; sometimes things break, Internet connections go bad in the
middle of a page load, or visually impaired users need to hear what is in the image, because
they can’t see it.

Safari on the Mac
doesn’t make good use
of the alt attribute
from broken images.

Opera on the Mac
displays the alt
attribute text.

Firefox on the Mac
just displays the text
in the alt attribute.

The Chrome browser displays a broken
image icon, but doesn't display the
text in the alt attribute.

IE displays the alt
attribute text along with
the broken image icon.

216 Chapter 5

exercise solutions

Note that your numbers may differ depending on the version of software you are using.

Your task this time: open the file “chapter5/testimage/eye.jpg” in Photoshop Elements. Open the “Save for Web”
dialog and fill in the blanks below by choosing each quality setting for JPEG (Low, Medium, High, etc.), and also try
PNG-24 and GIF. You’ll find this information in the preview pane below the image. Once you’ve finished, determine
which setting makes the most sense for this image.

?Which Image Format?

✹
✷

✻❄ 2

Solution

Is the winner really Medium? Not necessarily. It all depends on what your needs are. If you want a
really high-quality image, then you might want Very High. If you want the fastest possible site, then
try Low. We’ve chosen Medium because it is a nice tradeoff in size versus the quality of the image.
You may think Low is good enough, or that it’s worth bumping the quality up to High. So, it’s all
very subjective. One thing is for sure, however: PNG and GIF don't work very well for this image
(which should not be a surprise).

Did you notice
how the
image quality
degrades as
you go from
JPEG Maximum
to Low?

Format Quality Size Time Winner

PNG-24

JPEG

JPEG

JPEG

JPEG

GIF

N/A

Maximum

High

Medium

Low

N/A

32K

21K

6K

3K

2K

22K

13 seconds

8 seconds

3 seconds

2 seconds

1 second

9 seconds

you are here 4 217

adding images to your pages

If you look in the “html” folder with the chapter examples, you’ll find all of the single photo pages
already there, except one: the page for “seattle_downtown.jpg”. Create a page called “seattle_
downtown.html” in the “html” folder, and test it out. Get this working before you move on.
Here’s the answer:

<html>

 <head>

 <title>myPod: Seattle Downtown</title>

 <style type="text/css"> body { background-color: #eaf3da; } </style>

 </head>

 <body>

 <h1>Downtown Seattle</h1>

 <p>

 </p>

 </body>

</html>

Here’s the HTML; this file should
be called “seattle_downtown.html”.

mypod

photos htmlthumbnails

This file should go in the “html” folder under “mypod”. Here’s the test drive.

218 Chapter 5

exercise solutions

<h2>Seattle, Washington</h2>

<p>

 Me and my iPod in Seattle! You can see rain clouds and the

 Space Needle. You can't see the 628 coffee shops.

</p>

<p>

</p>

HTMLcross Solution

Here’s how you add the image “seattle.jpg” to the file “index.html”.

Q1 U A2 L I T Y
C
C3 O N C U R R E N T4 L Y
E H

T5 R A N S P A6 R E N C Y U
S N M L7

T8 H I R T Y F I V E B O
B I N N

J9 I10 M A G E A G
P11 I X E L L R12 E S I Z E
E I I13 P O D L R
G14 I F T A S

Y S

Across
1. With JPEG you can control this.

[QUALITY]
3. Most web browsers retrieve images

this way. [CONCURRENTLY]
5. PNG and GIF have it, JPEG

doesn't. [TRANSPARENCY]
8. Miles you can draw with a pencil.

[THIRTYFIVE]
10. Web server makes a request for

each one of these. [IMAGE]
11. Smallest element on a screen.

[PIXEL]
12. You used Photoshop Elements to do

this to images. [RESIZE]
13. Lovable MP3 player. [IPOD]
14. Better for solid colors, lines, and

small text. [GIF]

Down
2. The alt attribute improves this.

[ACCESSIBILITY]
4. Small images on a page.

[THUMBNAILS]
6. Technique for softening edges of

text. [ANTIALIAS]
7. The larger the image, the ______ it

takes to transfer it. [LONGER]
9. Better for photos with continous

tones. [JPEG]

this is a new chapter 219

Getting Serious with HTML
6 standards and all that jazz

What else is there to know about HTML? You’re well on your way to
mastering HTML. In fact, isn’t it about time we move on to CSS and learn how to
make all this bland markup look fabulous? Before we do, we need to make sure your
HTML is really ready for the big leagues. Don’t get us wrong, you’ve been writing first-
class HTML all along, but there are just a few extra things you need to do to make it
“industry standard” HTML. It’s also time you think about making sure you’re using the
latest and greatest HTML standard, otherwise known as HTML5. By doing so, you’ll
ensure they’ll display more uniformly across all browsers (at least the ones you’d care
about), not to mention, they’ll play well with the latest i-Devices (pick your favorite).
You’ll also have pages that load faster, pages that are guaranteed to play well with
CSS, and pages that are ready to move into the future as the standards grow. Get
ready, this is the chapter where you move from web tinkerer to web professional.

220 Chapter 6

writing standard html

Jim: Ready for prime time?

Frank: Yeah, you know, make sure it’s totally legit and
ready for HTML5.

Jim: Our HTML is just fine…here, look at it in the
browser. It looks beautiful.

Joe: Yeah, that’s what I think…he’s just trying to give us
another thing to do.

Frank: Actually guys, I hate to admit it, but I think the
boss is right on this one.

Jim, Joe: Huh?

Frank: Up until now we’ve pretty much ignored the fact
that there are standards for this stuff. Not to mention there
are different versions of HTML, like HTML 4.01, and
now, HTML5. Are we doing everything we need to make
sure we’ve got HTML5 covered?

Joe: Come on, this is just going to mean even more work.
We’ve already got enough to do. Really, the page looks fine;
I’ve even tested it on some of the newer devices.

Frank: That may be, but what I’m saying is that I think
this will help us do less work in the future.

Joe: Oh yeah? How so?

Jim
Joe

Frank

Hey guys, the
boss just sent an email.

Before we add CSS to the Head
First Lounge, he wants us to make sure

our HTML is ready for prime time.

you are here 4 221

standards and all that jazz

Frank: Well, if we make sure our HTML is up-to-date with current
standards, we won’t have to make as many changes down the road. We
should also make sure everything else is correct; you know, our syntax
and all that. There are so many different browsers and versions of those
browsers that if we’re making mistakes in our HTML, then all bets are off
in terms of how our pages will look in different browsers. And when we
start adding presentation to HTML with CSS, the differences will get even
more dramatic if our HTML isn’t up to snuff.

Joe: So, by making sure we’re adhering to the “standard,” we’ll have a lot
fewer problems with our pages displaying incorrectly for our customers?

Frank: Right.

Jim: If it reduces the number of 3 a.m. calls I get, then that sounds like a
good idea to me.

Joe: All right, how do we start? Don’t we adhere to the standards now?
What’s wrong with our HTML?

Frank: Maybe nothing, but the boss wants to be current with HTML5,
so we need to figure out which version of HTML we’re using and if it’s
not HTML5, what we need to do to get there. And, when we’re done, life
should be much easier when we start using CSS.

Browsers all do a pretty good job of consistently displaying
your pages when you write correct HTML, but when you make
mistakes or do nonstandard things in your HTML, pages are
often displayed differently from one browser to another. Why
do you think that is the case?

222 Chapter 6

html timeline

A Brief History of HTML

HTML 1.0–2.0 HTML 3

These were the early days; you
could fit everything there was
to know about HTML into
the back of your car. Pages
weren’t pretty, but at least
they were hypertext enabled.
No one cared much about
presentation, and just about
everyone on the Web had
their very own “home page.”
Even a count of the number
of pencils, paperclips, and
Post-it notes on your desk
was considered “web content”
back then (you think we’re
kidding).

The long, cold days of the
“Browser Wars.” Netscape
and Microsoft were duking it
out for control of the world.
After all, he who controls the
browser controls the universe,
right?

At the center of the fallout
was the web developer.
During the wars, an arms
race emerged as each browser
company kept adding their
own proprietary extensions
in order to stay ahead. Who
could keep up? And not
only that, back in those days,
you had to often write two
separate web pages: one for
the Netscape browser and
one for Internet Explorer. Not
good.

Ahhh…the end of the Browser
Wars and, to our rescue, the
World Wide Web Consortium
(nickname: W3C). Their plan:
to bring order to the universe
by creating the ONE HTML

“standard” to rule them all.

The key to their plan?
Separate HTML’s structure
and presentation into two
languages—a language for
structure (HTML) and a
language for presentation
(CSS)—and convince the
browser makers it was in their
best interest to adopt these
standards.

But did their plan work?

Uh, almost…with a few
changes (see HTML 4.01).

HTML 4

1989 1991 1995 1998

you are here 4 223

standards and all that jazz

The good life: HTML 4.01
entered the scene in 1999, and
was the “must have” version of
HTML for the next decade.

4.01 wasn’t really a big change
from 4.0; just a few fixes were
needed here and there. But
compared to the early days of
HTML (when we all had to walk
barefoot in six feet of snow, uphill
both ways), HTML 4.01 allowed
us all to sleep well at night
knowing that almost all browsers
(at least the ones anyone would
care about) were going to display
our content just fine.

HTML 4.01

1999 ????

And what will happen in the future? Will we all
be going to work in flying cars and swallowing
nutrition pills for dinner? Keep reading to find out.

2001

Starting with this chapter, our goal is to write proper HTML5. As always, the world keeps moving, so we’ll also talk about where things are going.

Of course, with no support from the
community, the marriage didn’t end
well and was replaced by new version
of HTML named HTML5. With its
support for most of the HTML 4.01
standard, and new features that reflect
the way the Web has grown, HTML5
is what developers were looking for.
And, with features like support for
blog-like elements, new video and
graphic capabilities, and a whole new
set of capabilties aimed at building
web applications, HTML5 was
destined to become the standard.

To be honest, the divorce of HTML
and XML took a lot of people by
surprise, leading to confusion about
what HTML5 actually is for a while.
But that’s all been sorted out, so read
on to find out what HTML5 means to
you, and how you can join in the fun.

HTML5

Just as we were all getting comfortable,
a shiny object distracted everyone.
That shiny object was XML. In fact, it
really distracted HTML, and the two
got hitched in a shotgun marriage that
resulted in XHTML 1.0.

XHTML promised to end all the
woes of the Web with its adherence to
strictness and new way of doing things.

The only problem was, people ended
up hating XHTML. They didn’t want
a new way to write web pages, they
just wanted to improve what they
already had with HTML 4.01. Web
developers were far more interested
in HTML’s flexibility than XHTML’s
strictness. And, more and more, these
developers wanted to spend their time
creating web pages that felt more like
applications than documents (more on
web apps later)…

XHTML 1.0

2009

most

2012

224 Chapter 6

browsers and html versions

Head First: We’re glad to have you here, Browser. As
you know, “HTML versions” have become a popular
issue. What’s the deal with that? You’re a web browser,
after all. I give you HTML and you display it the best
you can.

Browser: Being a browser is tough…there are a lot
of web pages out there, and many are written with old
versions of HTML or with mistakes in their markup.
Like you said, my job is to try to display every single
one of those pages, no matter what.

Head First: So what’s the big deal? You seem to be
doing a pretty good job of it.

Browser: In some cases, sure, but have you ever
looked at your pages on a lot of different browsers?
When you are using old or incorrect markup, your page
may look great on one browser, but not so great on
another.

Head First: Really? Why is that? Don’t you all do the
same thing?

Browser: We do a great job of doing the same thing,
when we’re displaying correct and up-to-date pages. Like I
said, when you venture into pages that aren’t written
well, then things get a lot dicier. Here’s why: all of us
browsers have the HTML specification to tell us how to
display correct HTML, but when it comes to incorrect
HTML, we just wing it. So, you might get very different
behaviors on different browsers.

Head First: Ahh. So, what’s the solution to this mess?
We definitely want our pages to look good.

Browser: Easy. Tell me up front which version of
HTML you’re using. You’d be surprised how many
pages don’t even do that. And make sure your page
doesn’t contain any errors; you know, mismatched
markup tags, that kind of thing.

Head First: How do we tell you which version we’re
using? Especially now that we’re all moving on to
HTML5.

Browser: Well, HTML5 is actually making things a
little simpler.

Head First: Really? How is a new version of HTML
helping? I would have thought yet another version
would just make things even more difficult.

Browser: It’s true that any new version of a language
causes growing pains as everyone tries to catch up with
the latest standard. But HTML5 simplifies the way you
tell me the kind of HTML you’re using. The HTML5
standard is also documenting many of the errors that
can occur in web pages, so that all the browsers can be
more consistent about how they handle those errors.

Head First: Oh, so does that mean we don’t have
to worry about making errors when we’re writing our
HTML?

Browser: No! Just because we can handle errors
better doesn’t mean you can be sloppy. You still want
your page to be consistent with the standard and
written without errors. If you don’t, you might get
inconsistent results across browsers, and let’s not forget
the browsers on mobile devices, too.

Head First: Back to how we tell you what version
we’re using?

Browser: Yeah, that used to be a total pain in the…

Head First: Uh, watch it, this is a PG-rated audience,
and we’re running out of time, quickly!

Browser: Okay, you can tell me all about the version
of HTML you’re using with a doctype. It’s a little bit
of “markup” you can use that goes at the very top of
your HTML file. So, given we’re out of time, go check
it out!

The Browser Exposed
This week’s interview:
Why do you care so much about
which HTML version I'm using?

you are here 4 225

standards and all that jazz

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

Notice that this is NOT an HTML
element. It has a “!” after the “<”
at the beginning, which tells you
this is something different.

This is specifying
a document type
for this page to
the browser.

You can type this all
on one line, or if you
want, you can add a
return where we did.
Just make sure you
only press Return in
between the parts in
the quotes.

This means
that <html>
is the root
(first) element
in your page.

This points to a file
that identifies this
particular standard.

This part says we’re
using HTML version
4.01 and that HTML
markup is written in
English.

This just
means the
HTML 4.01
standard
is publicly
available.

We did some digging and found some old HTML 4.01 and XHTML 1.1
pages. These pages use a doctype, at the very top of the HTML file, to tell
the browser which version of HTML they’re using. We’ve snipped out a
couple of doctypes for you to look at. Check them out below…

HTML
Archaeology

<!DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

Just like the HTML DOCTYPE,
this is a public document type. It’s for the XHTML 1.1

version of XHTML.

And it has a URL pointing to the
definition of XHTML 1.1.

It’s still a version of
HTML—an XML version.

For more on XHTML, check out the appendix.

226 Chapter 6

guess the doctype

Rather than tell you the doctype definition for HTML5, we thought you might want
to have fun working it out on your own. Take another look at the HTML 4.01 doctype
definition below:

Remember, the doctype definition belongs at the top of your HTML file and tells the browser
the type of your document—in this case, HTML 4.01. By using a doctype, the browser is able
to be more precise in the way it interprets and renders your pages.

So, using your deductive powers, what do you think the doctype definition for HTML5 looks
like? Write it here (you can refer back to your answer when we cover this on the next page,
and no peeking at the answer!):

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

Your answer goes here.

This part says we’re using HTML
version 4.01 and that this
markup is written in ENglish.

And this means
this standard is
publicly available.

This points to a file that
identifies this standard.

Remember, this is the
doctype for “html”.

you are here 4 227

standards and all that jazz

Okay, get ready for it. Here’s the HTML5 doctype:

<!doctype html>

Wait, isn’t this supposed to tell
the browser the version? Where’s the
version number? Is that a typo?

Good point. No, it’s not a typo, and let’s step through why: you
know the doctype used to be a complicated mess full of version
numbers and ugly syntax. But with the arrival of HTML5, the
doctype was simplified so that now all we have to do is tell the
browser we’re using “html”; no more worrying about specific
version numbers or languages or pointing to a standard.

How can that be? How can we just specify “html” without the rest?
Doesn’t the browser need that other information? Well, as it turns
out, when the browser sees:

 <!doctype html>

it assumes you’re using standard HTML. No more getting all hung
up on version numbers or where the standard is located; in fact, the
HTML standard has become a “living standard,” meaning that
it will continue to grow and morph as needed, but without fixed
version numbers. Now, you’re probably thinking, “What exactly
does a living standard mean? How is that going to work?” You’ll see,
on the next page…

It's just one line; don't miss it.

Our sympathies
to those who had
the old doctype
tattooed on
their palms to
remember it.

And it’s really simple!

The new, and improved, HTML5 doctype

How close was your answer in the Sharpen Your Pencil? This is much simpler,
wouldn’t you say? And, wow, you might even be able to remember it without
having to look it up everytime you need a doctype.

228 Chapter 6

html is backwards compatible

HTML, the new “living standard”
You heard us right…rather than continue to crank out version 6, 7, 8 of HTML, the
standards guys (and gals) have turned the specification into a living standard that will
document the technology as it evolves. So, no more version numbers. And you can stop calling
it HTML5 because it’s just “HTML” from here on out.

Now, you’re probably wondering how this is going to work in practice. After all, if the spec is
continually changing, what does that mean for the poor browsers? Not to mention, for you,
the web developer? One key to this working is backwards compatibility. Backwards compatibility
means that we can keep adding new stuff to HTML, and the browsers will (eventually)
support this new stuff, but they’ll also keep supporting the old stuff. So the HTML pages
you’re writing today will keep working, even after new features have been added later.

Works on:
IE9, Chrome
17, Firefox
10, Safari 5,
Opera 11

Works on all
those…plus
new versions
of each

Works on all
those…plus
new versions
of each

Works on all those…
plus fancy new
browsers we haven’t
even thought of yet!

Notice each new version is getting a little bigger because
new stuff is being added, but the old stuff still works!

Your HTML from today still works because the old stuff is still supported.

 Q: So what happens if the spec
changes tomorrow? What do I do?

A: If you’re writing solid HTML today and
the spec changes tomorrow to incorporate
a new element, then you can just keep
on doing what you’re doing. It’s up to you
whether you want to use that new element
or not.

If the spec changes something you’re
already doing, like the way an element or
attribute works, then browsers are supposed
to continue to support the old way you’re
using it as well as the new way. That’s what

“backwards compatibility” means. Now, it is
obviously a good thing if existing features
are changed as little as possible, and if you,
as a web developer, keep up-to-date on the
spec and change your pages as the spec
changes, but the idea is that your HTML will
continue to work as the spec changes.

Q: What exactly is a spec, anyway?

A: The specification is the document that
specifies what the HTML standard is; that is,
what elements and attributes are in HTML,
and more. This document is maintained by
the World Wide Web Consortium (W3C, for
short), but anyone can contribute to it and
have a say in how the standard is developed.

you are here 4 229

standards and all that jazz

<!doctype html>
<html>
 <head>
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for refreshing
 elixirs, conversation and
 maybe a game or two of Dance Dance Revolution.
 Wireless access is always provided; BYOWS (Bring
 your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You'll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Adding the document type definition
Enough talk, let’s get that doctype in the HTML.

Here’s the doctype line. Just
add it as the very first thing
in the “lounge.html” file.

Okay, I think we’ve
got it now. Let’s get that

doctype in the lounge files and
update these pages to HTML5.

You can write DOCTYPE
or doctype. Both work.

230 Chapter 6

testing with a doctype

Wow, no difference. Well, we didn’t
really expect any because all the
doctype does is let the browser know
for sure you’re using HTML5.

The doctype test drive
Make the changes to your “lounge.html” file in the

“chapter6/lounge” folder and then load the page in your browser.

Add a doctype to the “directions.html” and “elixir.html” file as well. Go ahead and give them a good
test. Just like “lounge.html”, you won’t see any fireworks (but you might sleep a bit better tonight).

you are here 4 231

standards and all that jazz

Head First: HTML5, you’re the “latest and greatest”
version of HTML that everyone’s yammering on about,
but our readers want to know what’s so great about you.

HTML5: First off, I’ve got a bunch of new elements and
some new attributes too.

Head First: We don’t seem to be using any of those yet,
are we?

HTML5: All the elements you’re using are part of my
standard now, so you’re using HTML5 elements. But no,
you’re not using any of the new ones yet…

Head First: Why not? Shouldn’t we be using all the
newest elements as soon as possible?

HTML5: Not necessarily. Remember (from Chapter 3):
always use the right element for the job! And my newest
elements have specific jobs. Some of them are for adding
more structure and meaning to your page. Like my new
<article> element, which is specifically for things like
blog posts and news articles.

Head First: We could have used that in Chapter 3 for
Tony’s blog, right?

HTML5: That’s true…I’m sure you’ll add it later on.

Head First: I’m sure our readers are wondering, since
they’re learning HTML in this book, if they need to go
learn HTML5 instead?

HTML5: No! HTML5 is just the next evolutionary step,
everything they’ve learned is exactly the same in HTML5.
HTML5 just adds some new stuff. In fact, we should stop
saying “HTML5.” I’m just the latest version of HTML,
so call me HTML. Saying HTML5 at this point is just
confusing.

Head First: Wait, after all the hype around HTML5, are
you really suggesting we do away with your name?

HTML5: I am. You already know I’m a living standard
and version numbers are dead. Well, I’m a living standard
for HTML, not HTML5.

Head First: Got it. Our readers really should just
continue learning HTML5—uhh sorry, HTML—and
everything they’ve learned so far has been relevant. Not to
mention all the new stuff ahead that they’ll be learning is
the latest and greatest HTML technology.

HTML5: Exactly.

Head First: I have to ask, though, I heard some of your
new stuff is for building web apps. How does that relate?

HTML5: The biggest thing is that I’m not just for making
web pages anymore; I’m designed for making full-blown
web applications.

Head First: What’s the difference?

HTML5: Web pages are mostly static pages. You’ll have
some images and a bunch of links, and a few nice effects
here and there, like on the menus, but for the most part
pages are for reading. Web applications, on the other
hand, are for interacting with, doing stuff with. Like the
applications on your desktop, only with web applications,
you’re doing stuff on the Web.

Head First: Can you give me an example?

HTML5: Social media apps, mapping apps, games…the
list is endless.

Head First: We couldn’t do that stuff before HTML5?

HTML5: Well, you could do some of it, but a lot of the
features required to build those kinds of applications are
being standardized for the first time with me. Before, if
they existed at all, they were somewhat haphazard.

Head First: I don’t think we’re going to be building any
apps in this book, though.

HTML5: No, but check out Head First HTML5
Programming. That book is all about building web
applications with me!

Head First: We will! Thanks for being here, HTML5.

HTML5 Exposed
This week’s interview:
What’s the big deal about HTML5?

232 Chapter 6

how to validate your html

Jim: Yeah, really easy. But also
a little anticlimactic…we put this

doctype at the top of our file to tell
the browser our page is HTML, but so

what? Nothing really changes.

Frank: Right, nothing you can see changes, but it
does communicate to the browser that we’re using
standard HTML. And the browser can use that
information to its (and our) advantage. Plus, the boss
wanted us to be writing totally legit HTML, and for
that we need the doctype.

Jim: Okay, is that it, then? Are we now writing
industry standard HTML?

Frank: As far as I know, but this is where it gets
interesting. The one thing that can trip us up now

is errors we might have introduced into the page. Say
we forgot a closing tag? Or had a typo in a tag name?

Jim: Oh right, well, wouldn’t we know it if we did?

Frank: Not necessarily; the browser is pretty good at
winging it when it sees errors.

Jim: How about I get the guys together, and we do a review
of the entire page?

Frank: You may not need to…there are tools out there to help validate
the page.

Jim: Validate?

Frank: Right, to go through the page and make sure all the markup is
valid. Make sure we’re keeping to the standard. It’s a bit like a spell checker
for HTML.

Jim: Sounds like a good idea. Where do we get these tools?

Frank: The standards guys over at the W3C have a validator, and it’s free.

Jim: Great, let’s do it.

Okay, that wasn’t bad; now
we’re telling the browser
we’re standard HTML.

you are here 4 233

standards and all that jazz

Meet the W3C validator

There are three ways
you can check your
HTML:

The W3C validator is located at http://va
lidator.w3.org.

(1) If your page is on the Web,
then you can type in the URL
here and click the Check button,
and the service will retrieve your
HTML and check it.

(2) You can choose the second
tab, and upload a file from your
computer. When you’ve selected
the file, click Check, and the
browser will upload the page for
the service to check.

(3) Or, choose the third
tab, and copy and paste your
HTML into the form on
that tab. Then click Check
and the service will check
your HTML.

Let’s check out the W3C validator and have it validate our
lounge files. To follow along, just point your browser to
http://validator.w3.org.

234 Chapter 6

validating the lounge

Validating the Head First Lounge
We’re going to use the third tab, “Validate by Direct Input” to validate
the “lounge.html” file. That means we need to copy and paste the
HTML from “lounge.html” into the form on that tab; keep following
along and give it a try…

We’re using method (3) here. We clicked on the “Validate by Direct Input” tab
and pasted the code for “lounge.html”, which now has the doctype for HTML5
at the top, into the form. We’re ready for the big moment…will the web page
validate? Bets anyone? Click Check (and turn the page) to find out…

Feel free to use
method (1) or
(2) if it’s more
convenient.

you are here 4 235

standards and all that jazz

The W3C is constantly
revising the validator.

Because the W3C frequently

revises the validator, you may

not see exactly the same error

messages. No worries, just keep following

along because all the stuff in the next few

pages is important, even if you don’t see

the error above.

This must be
the error.

This doesn’t look bad. It looks like
we have to use the alt attribute in
the element.

We failed the
validation.
It looks like
there is one
error.

Houston, we have a problem…
That red on the page can’t be good. It doesn’t look
like the page validated. We’d better take a look…

236 Chapter 6

the alt attribute is required

<!doctype html>
<html>
 <head>
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for refreshing
 elixirs, conversation and
 maybe a game or two of Dance Dance Revolution.
 Wireless access is always provided; BYOWS (Bring
 your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You'll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Fixing that error

You know the alt attribute;
add it into the element.

Okay, this looks pretty simple to fix. You just need to add an
alt attribute to your elements in HTML5. Go ahead
and open “lounge.html”, make the change, save, and then
let’s try to validate again.

Why do you think the alt attribute is required in HTML5?

you are here 4 237

standards and all that jazz

We’re almost there…
Success! We have a green bar on the page; that must be good. But there are three
warnings. That sounds like we’ve still got a few things to take care of. Let’s take a look:

So, we’ve got a valid file in terms of how we’ve written the
HTML, but it looks like we need to do something about our

“character encoding.” Let’s take a look at what that means…

…there are a few warnings;
we should scroll down and
take a look…

Hmm, this looks like a problem caused
by leaving out some information about
your character encoding. We’ll see what
that’s about in a sec…

No worries here—this is a
standard warning you’ll always
see as long as the validator is
considered to be experimental by
the W3C (which could be for a
long time).

We passed! But…

And this just says that they are going
to assume a character encoding, given
we didn’t supply one.

238 Chapter 6

we need a character encoding

See, we’re getting
this warning message

that the validator can’t
find a character encoding.

Frank: The character encoding tells the browser what kind of
characters are being used in the page. For instance, pages can be
written using encodings for English, Chinese, Arabic, and lots of other
types of characters.

Jim: What’s so hard about figuring out how to display a character? If
there’s an “a” in the file, then the browser should display an “a”. Right?

Frank: Well, what if you’re using Chinese in your pages? It’s an
entirely different “alphabet” and it has a heck of a lot more than 26
A–Z characters.

Jim: Oh. Good point…but shouldn’t the browser be able to tell the
difference? Those other languages look nothing like English.

Frank: No, the browser is just reading data. It can try to guess what
kind of character encoding to use, but what if it’s wrong? This can lead
not only to pages being displayed wrong, but also potential exploits
from hackers. The character encoding takes the guesswork out of it.

Jim: We’ve had the site up for a long time. Why is this an issue now?

Frank: Because the validator is saying “Hey, if I’m going to validate
your page, you’d better tell me up front what characters you’re going
to use!” And think about it, we’d want to do that for the browsers out
there anyway. Don’t stress, we just need to add one more line to our
HTML, called a <meta> tag. I should have thought of this sooner.

Jim: Got any other surprises for us? I really thought our web page
would validate after we put the document type definition in our file…

Frank: I sure hope there are no more surprises! Let’s get the <meta>
tag in there and find out.

you are here 4 239

standards and all that jazz

Adding a meta tag to specify the character encoding
Character encodings give us a way to represent all the letters, numbers and other symbols in our
language on the computer. You might know of some of these encodings, like ASCII or even Morse
code, and there are many other encodings out there. Luckily, the world has now standardized on
the Unicode character encoding. With Unicode, we can represent all languages with one type of
encoding. But, given there are other encodings out there, we still need to tell the browser we’re using
Unicode (or another encoding of your choice). To specify Unicode for your web pages, you’ll need a
<meta> tag in your HTML that looks like this:

Just like other
HTML tags, the
<meta> tag has
attributes.

“meta” means we’re

going to tell th
e

browser something

about the page
…

The charset
attribute is where
we specify the
character encoding.

<meta charset="utf-8">

The value of the
charset attribute is
the type of character
encoding we're using.

Q: Doctypes, <meta> tags…ugh, do I need to really do all this
to write web pages?

A: Specifying a doctype and character encoding with a <meta>
tag are kind of like taxes: you gotta do them to be compliant. Look
at it this way: you already understand them more than 98% of the
web page writing population, which is great. But at the end of the day,
everyone just puts the doctype and <meta> tag in their HTML and
moves on with life. So make sure you’ve got them in your HTML, and
then go do something much more fun.

Q: utf-8?

A: Work with us here. It’s like WD-40; you don’t worry about
why it’s called that, you just use it. As we said, utf-8 (also written
sometimes as UTF-8) is part of the Unicode encoding family. The u
in utf-8 means Unicode. Unicode is a character set supported across
many commonly used software applications and operating systems,
and is the encoding of choice for the Web, because it

supports all languages, and multilingual documents (documents
that use more than one language). It’s also compatible with ASCII,
which was a common encoding for English-only documents. If you’re
interested in learning more about Unicode or character encodings in
general, check out the information on character encoding at
http://www.w3.org/International/O-charset.html.

Q: I've also seen <meta> tags that look like this: <meta http-
equiv="Content-Type" content="text/html;charset=utf-8" >. Do I
need to use this instead sometimes?

A: No. That is the format for the <meta> tag in HTML 4.01 and
earlier. In HTML5, you can just write <meta charset="utf-8">.

Q: Is this why you had us save our files using utf-8 for the
encoding way back in Chapter 1?

A: Yes. You want the encoding of the file you’re serving to the
browser to match the encoding you specify in the <meta> tag.

“utf-8” is an encoding in the
Unicode family of encodings (one
of several). “utf-8” is the version
we use for web pages.

240 Chapter 6

using meta to specify a charset

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for refreshing
 elixirs, conversation and
 maybe a game or two of Dance Dance Revolution.
 Wireless access is always provided; BYOWS (Bring
 your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You'll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Making the validator (and more than a few
browsers) happy with a meta tag…
The <meta> tag belongs in the <head> element (remember that the <head>
contains information about your page). Go ahead and add the <meta> tag line right
into your HTML. Let’s first add it to the “lounge.html” file:

Want to place another bet? Is this going to validate? First, make the
changes to your “lounge.html” file, save it, and reload it into your
browser. Once again, you won’t notice any change, but the browser will.
Now let’s see if it validates…

Here’s the <meta> tag. We’ve
added it to the <head> element
above the <title> element.

Add this line above any other
elements in the <head> element.

you are here 4 241

standards and all that jazz

This time, we picked the second tab (validate by file upload). You can choose whichever
method works best for you. If you want to try the upload method, then upload your

“lounge.html” HTML file to the W3C validator web page at http://validator.w3.org.
Once you’ve done that, click the Check button…

“Successfully checked as
HTML5"!
Love the green!

This is just the same warning about the
fact that we're using an “experimental
service." Nothing to worry about.

Third time’s the charm?

Success! We can tell the
boss we’re writing totally
industry standard HTML, and
we can even say we’re ready
for HTML5.

We still have one
warning…but we don't
need to worry about it
(see below).

242 Chapter 6

more about validation and versions

Q: The validator says it is experimental for HTML5. What
does that mean?

A: The message “Using experimental feature: HTML5
Conformance Checker” in the validator means that the validator is
checking your HTML according to the HTML5 standard, but because
the HTML5 standard isn’t final (and still has new features being
added), the validator is prone to change, so the results you get
when you validate your page aren’t set in stone. That means, as a
conscientious developer, it’s in your best interest to stay up-to-date
on the HTML standard, and check your pages fairly regularly.

Q: What have we really achieved in this chapter? My page
still looks the same.

A: In this chapter we’ve tweaked your page slightly so that it is
compliant with the HTML specification. What good is that? The closer
you are to the spec, the more likely that your page is going to perform
well in the real world. If you’re producing a professional web page,
you want it to be written using the industry standard, and that’s what
we’ve done in this chapter by adding a doctype, setting a character
encoding, and cleaning up an oversight (the alt attribute) in the HTML.

Q: Why do we need that alt attribute anyway?

A: For two great reasons. First, if your image is broken for some
reason (say, your image server goes down, or your connection is
really slow), the alt attribute will (in most browsers) show the alt text
you’ve specified in place of the image. Second, for vision-impaired
users who are using a screen reader to read the page, the screen
reader will read the alt text to the user, which helps them understand
the page better.

Q: What if I tell the browser I’m using HTML5, and I’m not?

A: The browser will figure out that you’re not really writing HTML5
and use the error handling capabilities it has to try to do the right
thing. And then you’re back to the problem of having the various
browsers handle your page in different ways. The only way you can
get predictable results is to tell the browser you’re using HTML5 and
to actually do so, properly.

Q: We talked a little about HTML5, but I want make sure I’m
clear: is there any difference between the HTML we’re writing
and HTML5?

A: We’re using standard HTML, which is HTML5. Now, HTML5
introduced some new markup (which we’ll be seeing soon enough)
as well as support for writing web applications (which we won’t be
doing in this book), but HTML5 is HTML, and everything you’ve
been writing is HTML5 “compliant.” So, sorry for the terminology, but
going forward everything is just HTML, including all the new features
provided by the HTML5 specification.

The good news is that everything you’ve learned is all ready for
HTML5, and in fact you see how little you actually had to do to go
from an “informal HTML” page to a professional HTML page. That
said, you might want to tell your boss you’re already using HTML5
just for bonus points toward your next raise.

Q: What’s the big deal with HTML5 compared to HTML 4.01
anyway?

A: The big deal about HTML5 is threefold. First, there are some
new elements and attributes in HTML5 that are pretty cool (like the
<video> element), and others that will help you write better pages
(we’ll be getting to those later in the book).

Second, there are many new features that allow web developers
to create web applications with HTML5. Web applications are web
pages that behave more like applications (like the ones you’re used
to using on your laptop or mobile device) than static web pages. If
you’re interested in creating web applications, then after you’re all
done with this book (cue shameless plug), you should check out
Head First HTML5 Programming (O’Reilly).

Finally, the HTML5 specification is a lot more robust than the
specifications for the previous versions of HTML. Remember how we
said that the specification is now documenting common errors that
web developers make? And helping browsers to know how to handle
those errors? That means that web pages with errors on them don’t
cause the havoc they used to, which is a good thing for users.

All in all, HTML5 is a big improvement over HTML 4.01, and well
worth learning. We’ll get you up to speed quickly over the next few
chapters.

you are here 4 243

standards and all that jazz

Your turn. Add the <meta> tag to “directions.html” and “elixir.html”. Try validating
them; do they validate? If not, fix them so that they do.

Use this space for notes about your
validating experience!

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for refreshing
 elixirs, conversation and
 maybe a game or two of Dance Dance Revolution.
 Wireless access is always provided; BYOWS (Bring
 your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You'll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Time to play a little game with the validator. Take the code you just successfully
validated as HTML5 (on page 241), and remove the doctype. That’s right—remove it,
just to see what happens when you validate. Go ahead and submit this version of the
file to the validator and see what happens. Make notes below about the errors you get.

Your notes here. How many
errors did you get?

Remove the doctype!

What does this tell you about the type of

your HTML if you don’t include a doctype?

244 Chapter 6

tips for good html

Welcome to the elite set of HTML crafters, those who know how to create professional
pages. There’s a lot to remember, so the City of Webville prepared a handy guide to creating
industry standard pages. This guide is meant for you—someone who is new to Webville. It
isn’t an exhaustive reference, but rather focuses on the more important best practices in
building your pages. And you’ll definitely be adding to the knowledge in this guide as you get
to know your way around Webville in coming chapters. But for now, take one—they’re FREE.

Calling all HTML professionals, grab the handbook…

you are here 4 245

standards and all that jazz

The <html> element: don’t leave home without it.
Following the doctype, the <html> element must
always be the top, or root, element of your web
page. So, after the doctype, the <html> tag will
start your page and the </html> tag should end it,
with everything else in your page nested inside.

Remember to use both your <head> and your
<body> for better HTML.

Only the <head> and <body> elements can go
directly inside your <html> element. This means
that every other element must go either inside the
<head> or the <body> element. No exceptions!

Webville Guide to HTML
In this handy guide, we’ve boiled down writing well-formed HTML pages
into a common sense set of guidelines. Check them out:

Always begin with the <doctype>.
Always start each page with a doctype. This will
get you off on the right foot with browsers, and
with the validator too.

Feed your <head> the right character encoding.
Include a <meta charset="utf-8"> tag in your
<head>. The browser will thank you, and so will
your users when they’re reading comments on your
blog from users around the world.

Use <!docytype html> at all times, unless
you really are writing HTML 4.01 or XHTML.

246 Chapter 6

the fine points of html

Webville Guide to HTML, continued
In this handy guide, we’ve boiled down writing well-formed HTML pages
into a common sense set of guidelines. Check them out:

What’s a <head> without a <title>?
Always give your <head> element a <title>
element. It’s the law. Failure to do so will result in
HTML that isn’t compliant. The <head> element
is the only place you should put your <title>,
<meta>, and <style> elements.

Within the guidelines we’ve provided here, the
nesting rules are fairly flexible. But there are a couple
of cases that don’t make sense. Never nest an <a>
element inside another <a> element because that
would be too confusing for our visitors. Also, void
elements like provide no way to nest other
inline elements within them.

Be careful about nesting certain elements.

Check your attributes!
Some element attributes are required, and some are
optional. For instance, the element wouldn’t
make much sense without a src attribute, and now
you know the alt attribute is required too. Get familiar
with the required and optional attributes of each
element as you learn it.

you are here 4 247

standards and all that jazz

<html>

<head>

 <title>Webville Forecast</title>

</head>

<body bgcolor="tan" text="black">

 <p>

 The weather report says lots of rain and wind in store for
 Webville today, so be sure to
 stay inside if you can.

 </p>

 Tuesday: Rain and 60 degrees.

 Wednesday: Rain and 62 degrees.

 <p align=right>

 Bring your umbrella!

 <center>This page brought to you buy Lou's
 Diner, a Webville institution for over 50 years.

 </center>

</body>

</html>

Here are some attributes that
controlled presentation. bgcolor sets
the background color of the page, and
text sets the color of the body text.

Font changes were made with the
 element and its face attribute.

You could get away without some
closing tags, like and </p>.
You sometimes still can, but it is
not recommended!!

Here were two ways to align
text. Right-align a paragraph,
or center a piece of text.

Text size was controlled
with the element,
using the size attribute.

Throughout this book you’ve been using elements and attributes that are all part
of the current HTML standard. So, you haven’t had much opportunity to see the
phased-out elements and attributes. Most of those elements actually got phased
out in HTML 4.01, but they may still be hanging around in old web pages, so it
doesn’t hurt to know a little about these legacy elements. We did some digging
and found an HTML 3.2 page that contains some elements and attributes that are
no longer part of the standard, as well as a couple of common mistakes that are
not recommended in modern HTML.

Missing quotes around attribute values.
Quotes are always recommended now, and
required for attributes with multiple values.

HTML
Archaeology

248 Chapter 6

test your knowledge of html

BE the Validator
Below, you’ll find an HTML file. Your
job is to play like you’re the validator
and locate ALL the errors. After
you’ve done the exercise, look at the

end of the chapter to see if you caught
them all.

<html>
<head>
 <meta charset="utf-9">
</head>
<body>

 <h1>Tips for Enjoying Your Visit in Webville
 <p>
 Here are a few tips to help you better enjoy your stay in Webville.
 </p>

 Always dress in layers and keep an html around your
 head and body.
 Get plenty of rest while you're here, sleep helps all
 those rules sink in.
 Don't miss the work of our local artists right downtown
 in the CSS gallery.

 </p>
 <p>
 Having problems? You can always find answers at
 WickedlySmart.
 Still got problems? Relax, Webville's a friendly place, just ask someone
 for help. And, as a local used to say:
 </p>
 <p>
 Don't worry. As long as you hit that wire with the connecting hook
 at precisely 88mph the instant the lightning strikes the tower…
 everything will be fine.
 </p>
</body>
</html>

Use the validator to check
your work once you’re done
(or if you need hints).

you are here 4 249

standards and all that jazz

 � HTML5 is the current HTML standard.

 � The World Wide Web Consortium (W3C) is
the standards organization that defines what
standard HTML is.

 � The document type definition (doctype) is used
to tell the browser the version of HTML you’re
using.

 � The HTML standard is now a “living standard,”
which means that the standard will change to
incorporate new features and updates.

 � The <meta> tag in the <head> element tells the
browser additional information about a web page,
such as the content type and character encoding.

 � The charset attribute of the <meta> tag tells the
browser the character encoding that is used for
the web page.

 � Most web pages use the utf-8 encoding for HTML
files, and for the <meta> tag charset attribute.

 � The alt attribute is required for the
element.

 � The W3C validator is a free online service that
checks pages for compliance with standards.

 � Use the validator to ensure that your HTML is
well formed and that your elements and attributes
meet the standard.

 � By adhering to the standard, your pages will
display more quickly and with fewer display
differences between browsers, and your CSS will
work better.

Getting our HTML
up to snuff wasn’t too hard, but it

sure took a while to figure it all out.
And now we’ve got to style these
pages with CSS. That’s a whole
different language, isn’t it?

250 Chapter 6

are you awake?

It’s been a heck of a chapter. Go ahead and grab a cup of your favorite beverage, sit
back, and strengthen those neural connections by doing this crossword. All the answers
come from the chapter.

HTMLcross

Across
1. Victim of the browser wars.
4. The HTML standard is a _______ standard.
6. Required in the <head> element.
8. Web standards makers have promised future
HTML will be _______ compatible with older HTML.
10. The boss wanted to standardize before adding
_____ to the Lounge pages.
11. When your HTML meets the standard, it is this.
14. Definition that tells the browser and validator
what kind of document you’re creating.

Down
1. Standards organization that supplies the
validator.
2. Microsoft versus Netscape.
3. attribute required in standard HTML.
5. This service will check your HTML for
compliance with the standard.
7. The older _______ were much more complicated
compared to the newest one.
9. Where you put information about the page.
12. Where you put web page content.
13. The most common encoding for web pages.

1 2

3

4 5

6

7

8 9

10 11

12 13

14

Across
1. Victim of the browser wars.
4. The HTML standard is a ________

standard
6. Required in the <head> element.
8. Web standards makers have

promised future HTML will be
___________ compatible with
older HTML.

10. The boss wanted to standardize
before adding _____ to the Lounge
pages.

11. When your HTML meets the
standard, it is this.

14. Definition that tells the browser
and validator what kind of
document you’re creating

Down
1. Standards organization that

supplies the validator.
2. Microsoft versus Netscape.
3. attribute required in

standard HTML
5. This service will check your HTML

for compliance with the standard
7. The older _______ were much

more complicated compared to the
newest one.

9. Where you put information about
the page.

12. Where you put web page content.
13. The most common encoding for web

pages.

you are here 4 251

standards and all that jazz

<html>
<head>
 <meta charset="utf-9">
</head>
<body>

 <h1>Tips for Enjoying Your Visit in Webville
 <p>
 Here are a few tips to help you better enjoy your stay in Webville.
 </p>

 Always dress in layers and keep an html around your
 head and body.
 Get plenty of rest while you're here, sleep helps all
 those rules sink in.
 Don't miss the work of our local artists right downtown
 in the CSS gallery.

 </p>
 <p>
 Having problems? You can always find answers at
 WickedlySmart.
 Still got problems? Relax, Webville's a friendly place, just ask someone
 for help. And, as a local used to say:
 </p>
 <p>
 Don't worry. As long as you hit that wire with the connecting hook
 at precisely 88mph the instant the lightning strikes the tower…
 everything will be fine.
 </p>
</body>
</html>

<title> should be
in the <head>.

No alt attribute

Missing tag. This will still validate,
but it’s not recommended!

 and <p> tags are switched.

BE the Validator

Below, you’ll find an
HTML file. Your job

is to play like you’re
the validator and
locate ALL the errors.

Here’s the solution.

Solution

Missing doctype

Should be “utf-8" instead of
“utf-9" (which doesn't exist!)

Missing </h1> tag. This will cause
problems with the <p> element below.

Extra </p> that doesn’t match a <p>

252 Chapter 6

exercise solutions

HTMLCross Solution

Your turn. Add the strict doctype and the <meta> tag to
“directions.html” and “elixir.html”. Try validating them—do
they validate? If not, fix them so that they do.
Solution: To validate “elixir.html”, you’ll have to add the
alt attribute to each of your elements.

W1 E B2 D E V E L O P E R
3 R
C O A3

W L4 I V5 I N G
S T A
E L
R <6 T I T L E >
W D D7

B8 A C K W A R D S H9 O
R T E C

C10 S S C11 O M P L I A N T
R D Y

B12 U13 P
D14 O C T Y P E

D F S
Y 8

Across
1. Victim of the browser wars.

[WEBDEVELOPER]
4. The HTML standard is a ________

standard [LIVING]
6. Required in the <head> element.

[<TITLE>]
8. Web standards makers have

promised future HTML will be
___________ compatible with
older HTML. [BACKWARDS]

10. The boss wanted to standardize
before adding _____ to the Lounge
pages. [CSS]

11. When your HTML meets the
standard, it is this. [COMPLIANT]

Down
1. Standards organization that

supplies the validator. [W3C]
2. Microsoft versus Netscape.

[BROWSERWARS]
3. attribute required in

standard HTML [ALT]
5. This service will check your HTML

for compliance with the standard
[VALIDATOR]

7. The older _______ were much
more complicated compared to the
newest one. [DOCTYPES]

9. Where you put information about
the page. [HEAD]

12. Where you put web page content.
[BODY]

you are here 4 253

standards and all that jazz

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for refreshing
 elixirs, conversation and
 maybe a game or two of Dance Dance Revolution.
 Wireless access is always provided; BYOWS (Bring
 your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You'll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Time to play a little game with the validator. Take the code you just successfully
validated as HTML5 (on page 241), and remove the doctype. That’s right—remove it,
just to see what happens when you validate. Go ahead and submit this version of the
file to the validator and see what happens. Make notes below about the errors you get.

Your notes here. How many
errors did you get?

Remove the doctype!

We get three errors and four warnings if we try to validate without
the doctype. The validator assumes we’re writing HTML 4.01
Transitional (which was a version of HTML 4.01 designed to use while
you were “transitioning” to XHTML). The validator really doesn’t like
that there’s no doctype, and complains a couple of times about that.
It also complains about the <meta charset=“utf-8”>, because before
HTML5, charset was not a valid attribute of the <meta> tag. You can
get the idea that using a doctype makes both the validator, and the
browsers, happier campers.

this is a new chapter 255

I was told there’d be CSS in this book. So far you’ve been

concentrating on learning HTML to create the structure of your web pages. But as

you can see, the browser’s idea of style leaves a lot to be desired. Sure, we could

call the fashion police, but we don’t need to. With CSS, you’re going to completely

control the presentation of your pages, often without even changing your HTML.

Could it really be so easy? Well, you are going to have to learn a new language;

after all, Webville is a bilingual town. After reading this chapter’s guide to learning the

language of CSS, you’re going to be able to stand on either side of Main Street and

hold a conversation.

Don’t get me wrong, the
hair, the hat—it all looks great.
But don’t you think he’d like it if

you spent a little more time adding
some style to your HTML?

getting started with CSS7

Adding a Little Style

256 Chapter 7

You’re not in Kansas anymore

You’ve been a good sport learning about markup
and structure and validation and proper syntax and
nesting and compliance, but now you get to really
start having some fun by styling your pages. But no
worries, all those HTML push-ups you’ve been doing
aren’t going to waste. In fact, you’re going to see that
a solid understanding of HTML is crucial to learning
(and using) CSS. And learning CSS is just what we’re
going to do over the next several chapters.

Just to tease you a bit, on these two pages we’ve
sprinkled a few of the designs you’re going to work
with in the rest of the book. Quite a difference from
the pages you’ve been creating so far, isn’t it? So,
what do you need to do to create them? Learn the
language of CSS, of course.

Let’s get started…

Remember the Wizard of Oz? Well, this
is the part of the book where things
go from black and white to color.

you are here 4 257

getting started with css

258 Chapter 7

the css language

Overheard on Webville’s “Trading Spaces”
Not up on the latest reality TV? No problem, here’s a recap: take two
neighbors, two homes, and $1,000. The two neighbors switch homes, and
using the $1,000, totally redesign a room or two in 48 hours. Let’s listen in…

Of course, in the Webville edition of the show, everyone talks about
design in CSS. If you’re having trouble understanding them, here’s a little
translation tip: each statement in CSS consists of a location (like bedroom),
a property in that location (like drapes or carpet), and a style to apply to
that property (like the color blue, or 1 inch tiles).

Okay, let’s get some design in this place…

bedroom {

 drapes: blue;

 carpet: wool shag;

}

…and this bathroom needs some
serious help!

bathroom {

 tile: 1in white;

 drapes: pink;

}

you are here 4 259

getting started with css

Using CSS with HTML
We’re sure CSS has a bright future in the home design category, but let’s
get back to HTML. HTML doesn’t have rooms, but it does have elements,
and those elements are going to be the locations that we’re styling. Want to
paint the walls of your <p> elements red? No problem; only paragraphs
don’t have walls, so you’re going to have to settle for the paragraph’s
background-color property instead. Here’s how you do that:

p {

 background-color: red;

}

The first thing you do is select the
element you want to style, in this case
the <p> element. Notice in CSS, you
don’t put <> around the name.

Then you specify the property you
want to style, in this case the <p>
element’s background color.

And you’re going to set the background-color to red.

Place all the styles for the <p> element in between { } braces.

There’s a colon in between
the property and its value.

At the end, put
a semicolon.

You could also write the rule like this:

p { background-color: red; }

Here, all we’ve done is remove the linebreaks. As with HTML, you can format
your CSS pretty much as you like. For longer rules, you’ll usually want to add
some linebreaks and indenting to make the CSS more readable (for you).

Wanna add more style?
You can add as many properties and values as you like in each CSS rule. Say you
wanted to put a border around your paragraphs, too. Here’s how you do that:

p {
 background-color: red;
 border: 1px solid gray;
}

All you have to do is add
another property and value.

The <p> element will
have a border… …that is 1 pixel thick, solid, and gray.

We call the whole
thing a RULE.

260 Chapter 7

more about css and html

Q: Does every <p> element have the same
style? Or can I, say, make two paragraphs different
colors?

A: The CSS rules we’ve used so far define the style
for all paragraphs, but CSS is very expressive: it can
be used to specify styles in lots of different ways, for
lots of different elements—even subsets of elements.
You’ll see how to make paragraphs two different colors
later in this chapter.

Q: How do I know what properties I can set on
an element?

A: Well, there are lots of properties that can be
set on elements, certainly more than you’d want to
memorize, in any case. You’re going to get quite
familiar with the more common properties in the next
few chapters. You’ll probably also want to find a good
CSS reference. There are plenty of references online,
and O’Reilly’s CSS Pocket Reference is a great little
book.

Q: Remind me why I’m defining all this style in
a separate language, rather than in HTML. Since
the elements are written in HTML, wouldn’t it be
easier just to write style in HTML, too?

A: You’re going to start to see some big advantages
to using CSS in the next few chapters. But here’s a
quick answer: CSS really is better suited for specifying
style information than HTML. Using just a small bit of
CSS, you can create fairly large effects on the style
of your HTML. You’re also going to see that CSS is a
much better way to handle styles for multiple pages.
You’ll see how that works later in this chapter.

Say you have an element
inside a paragraph. If you change the
background color of the paragraph, do
you think you also have to change the
background of the element so it
matches the background color of the
paragraph?

you are here 4 261

getting started with css

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge</title>

 <style>

 </style>

 </head>
 <body>
 <h1>Welcome to the Head First Lounge</h1>
 <p>

 </p>
 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two of
 Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You'll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Getting CSS into your HTML
You know a little about CSS syntax now. You know how to select an element and then
write a rule with properties and values inside it. But you still need to get this CSS into
some HTML. First, we need some HTML to put it in. In the next few chapters, we’re
going to revisit our old friends—Starbuzz, and Tony and his Segway journal—and
make things a little more stylish. But who do you think is dying to have their site styled
first? Of course, the Head First Lounge guys. So, here’s the HTML for the Head First
Lounge main page. Remember, in the last chapter we fixed things up a little and made
it proper HTML (would you have expected any less of us?). Now, we’re adding some
style tags, the easiest way to get style into your pages.

But not necessarily the
best way. We’ll come
back to this later in
the chapter and see
another way.

Here’s what we’re interested in: the <style> element.
To add CSS style directly to your HTML, add
opening and closing style tags in the <head> element.

And your CSS rules are going to go right in here.

262 Chapter 7

adding style to the lounge

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge</title>
 <style>

 </style>
 </head>
 <body>
 <h1>Welcome to the Head First Lounge</h1>
 <p>

 </p>
 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two of
 Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You'll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

p {

 color: maroon;

}

Adding style to the lounge
Now that you’ve got the <style> element in your HTML, you’re going to add some style
to the lounge to get a feel for writing CSS. This design probably won’t win you any “design
awards,” but you gotta start somewhere.

The first thing we’re going to do is change the color (something to match those red lounge
couches) of the text in the paragraphs. To do that, we’ll use the CSS color property like this:

Here’s the rule that
is going to specify
the font color of the
paragraphs.

The p selector
selects all the
paragraphs in the
HTML.

The property to change the font color is
named “color” (you might think it would be
“font-color” or “text-color”, but it’s not).

We’re selecting just
the <p> element to
apply this style to.

We’re setting the text to a lovely maroon color that happens to match the lounge couches.

you are here 4 263

getting started with css

Cruising with style: the test drive

Here’s our
new maroon
paragraph
text.

Go ahead and make all the changes from the last couple of pages
to your “lounge.html” file in the “chapter7/lounge” folder, save,
and reload the page in your browser. You’ll see that the paragraph
text color has changed to maroon:

Everything else is as it
should be: the headings
are still black, because
all we selected to style
were the <p> elements.

Notice that the color
of the links didn’t
change. Keep that in
the back of your mind…

Instead of setting the color, what if you set background-color of
the <p> elements to maroon instead? How would it change the
way the browser displays the page?

264 Chapter 7

styling headings

Style the heading

h1 {
 font-family: sans-serif;
 color: gray;
}

h2 {
 font-family: sans-serif;
 color: gray;
}

p {
 color: maroon;
}

Now let’s give those headings some style. How about changing the
font a bit? Let’s change both the type of font, and also the color of
the heading fonts:

Actually, because these rules are exactly the same, we
can combine them, like this:

h1, h2 {
 font-family: sans-serif;
 color: gray;
}

p {
 color: maroon;
}

Here’s the rule to select
<h1> elements and change
the font-family to
sans-serif and the font
color to gray. We’ll talk a
lot more about fonts later.

And here’s another rule to do the exact same thing to the <h2> element.

To write a rule for more than one
element, just put commas between
the selectors, like “h1, h2”.

Test drive…
Add this new CSS to your “lounge.html” file
and reload. You’ll see that with one rule, you’ve
selected both the <h1> and <h2> headings.

Both of the headings
on the page are now
styled with a sans-serif
font and colored gray.

How about a different
font for the lounge headings?
Make them really stand out.
I’m seeing big, clean, gray…

you are here 4 265

getting started with css

Let’s put a line under the welcome message too
Let’s touch up the welcome heading a bit more. How about a line under it? That
should set the main heading apart visually and add a nice touch. Here’s the
property we’ll use to do that:

border-bottom: 1px solid black;

This property controls how the border under an element looks.
We’re going to style the
bottom border so that it is a

1-pixel-thick, solid black line.

The trouble is, if we add this property and value to the combined h1, h2
rule in our CSS, we’ll end up with borders on both our headings:

h1, h2 {
 font-family: sans-serif;
 color: gray;
 border-bottom: 1px solid black;
}

p {
 color: maroon;
}

If we do this…
…we get bottom borders on both our headings. Not what we want.

Here we’re adding a property
to change the bottom border
for both the <h1> and <h2>
elements.

So, how can we set the bottom border
on just the <h1> element, without
affecting the <h2> element? Do we have
to split up the rules again? Turn the
page to find out…

266 Chapter 7

getting more sophisticated with selectors

We have the technology: specifying a
second rule, just for the h1
We don’t have to split up the h1, h2 rule, we just need to add another
rule that is only for h1 and add the border style to it.

h1, h2 {
 font-family: sans-serif;
 color: gray;
}

h1 {
 border-bottom: 1px solid black;
}

p {
 color: maroon;
}

The first rule stays the same. We’re
still going to use a combined rule
for the font-family and color for
both <h1> and <h2>.

But now we’re adding a second rule that adds another property just to <h1>: the border-bottom property.

Another test drive…
Change your CSS and reload the page. You’ll see that the new rule
added a black border to the bottom of the main heading, which gives
us a nice underline on the heading and really makes it stand out.

Here’s the
bottom border
in black.

And no border
here—just what
we wanted.

you are here 4 267

getting started with css

So, how do selectors really work?

 h1 {

 color: gray;

 }

You’ve seen how to select an element to style it, like this:

Or how to select more than one element, like this:

You’re going to see that CSS allows you to specify all kinds of selectors that determine which elements
your styles are applied to. Knowing how to use these selectors is the first step in mastering CSS, and
to do that you need to understand the organization of the HTML that you’re styling. After all, how
can you select elements for styling if you don’t have a good mental picture of what elements are in the
HTML, and how they relate to one another?

So, let’s get that picture of the lounge HTML in your head, and then we’ll dive back into selectors.

 h1, h2 {

 color: gray;

 }

We call this the selector.

Another selector. The style is applied to <h1> and <h2>
elements.

The style is applied to the elements
described by the selector—in this
case, <h1> elements.

Q: So how does that work when you
have more than one rule for an element?

A: You can have as many rules as you
want for an element. Each rule adds to the
style information of the rule before it. In
general, you try to group together all the
common styles between elements, like we
did with <h1> and <h2>, and then any style
that is specific to an element, you write in
another rule, like we did with the border-
bottom style for the main heading.

Q: What’s the advantage of that
approach? Isn’t it better to organize each
element separately, so you know exactly
what styles it has?

A: Not at all. If you combine common
styles together, then if they change, you
only have to change them in one rule. If you
break them up, then there are many rules
you have to change, which is error-prone.

Q: Why do we use a bottom border to
underline text? Isn’t there an underline
style for text?

A: Good question. There is an underline
style for text and we could use that instead.
However, the two styles have slightly
different effects on the page: if you use
border-bottom, then the line will extend to the
edge of the page. An underline is only shown
under the text itself. The property to set text
underline is called text-decoration and has a
value of “underline” for underlined text. Give
it a try and check out the differences.

268 Chapter 7

drawing the lounge’s structure

Markup Magnets
Remember drawing the hierarchy diagram of HTML elements in
Chapter 3? You’re going to do that again for the Lounge’s main page.
Below, you’ll find all the element magnets you need to complete the
diagram. Using the Lounge’s HTML (on the right), complete the tree
below. We’ve done a couple for you already. You’ll find the answer in
the back of the chapter.

title

html

h1

em

head

style meta

body

h2

p

p
pa

a

html

head body

title p

q

Like this

img

you are here 4 269

getting started with css

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge</title>
 <style>
 h1, h2 {
 font-family: sans-serif;
 color: gray;
 }
 h1 {
 border-bottom: 1px solid black;
 }
 p {
 color: maroon;
 }
 </style>
 </head>
 <body>
 <h1>Welcome to the Head First Lounge</h1>
 <p>

 </p>
 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You'll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

The Head First
Lounge HTML

270 Chapter 7

visual selectors

html

body

p

img

p

a

h2

em

h1 p

a

html

body

p

img

p

a

h2

em

h1 p

a

Seeing selectors visually

h1 {

 font-family: sans-serif;

}

Let’s take some selectors and see how they map
to the tree you just created. Here’s how this “h1”
selector maps to the graph:

This selector matches any
<h1> elements in the page,
and there’s only one.

We can only style
elements in the body,
so we’re not showing
the <head> element
and everything under it.

h1, h2 {

 font-family: sans-serif;

}

Now the selector
matches both <h1>
and <h2> elements.

And here’s how the “h1, h2” selector looks:

If we use a “p” selector, here’s how that looks:

p {

 font-family: sans-serif;

}

This selector matches all the
<p> elements in the tree.

html

head body

p

img

p

a

h2

em

h1 p

a

you are here 4 271

getting started with css

Color in the elements that are selected by these selectors:

p, h2 {

 font-family: sans-serif;

}

p, em {

 font-family: sans-serif;

}

html

body

p

img

p

a

h2

em

h1 p

a

html

body

p

img

p

a

h2

em

h1 p

a

272 Chapter 7

winning with css

The Case of Brute Force Versus Style
When we last left RadWebDesign in Chapter 4, they had just
blown the corporate demo and lost RobotsRUs’s business.
CorrectWebDesign was put in charge of the entire RobotsRUs
site and got to work getting everything nailed down before the
site launch later in the month. But you’ll also remember that

RadWebDesign decided to bone up on their HTML and CSS.
They decided to rework the RobotsRUs site on their own, using
proper HTML and stylesheets, just to get some experience
under their belt before they took on another consulting job.

As fate would have it, just before RobotsRUs’s big site launch,
it happened again: RobotsRUs called CorrectWebDesign

with an urgent message. “We’re changing our corporate look
and we need all the colors, backgrounds, and fonts changed on
our site.” At this point, the site consisted of almost 100 pages, so
CorrectWebDesign responded that it would take them a few days
to rework the site. “We don’t have a few days!” the CEO said.
Desperate, the CEO decided to call in RadWebDesign for help.
“You flubbed up the demo last month, but we really need your help.
Can you help the CorrectWebDesign guys convert the site over to
the new look and feel?” RadWebDesign said they could do better
than that; in fact, they could deliver the entire site to them in less
than an hour.

How did RadWebDesign go from disgrace to web page
superheroes? What allowed them to change the look and
feel of 100 pages faster than a speeding bullet?

Five-Minute
Mystery

you are here 4 273

getting started with css

Getting the lounge style into the
elixirs and directions pages
It’s great that we’ve added all this style to “lounge.html”, but what
about “elixir.html” and “directions.html”? They need to have a look
that is consistent with the main page. Easy enough…just copy the style
element and all the rules into each file, right? Not so fast. If you did that,
then whenever you needed to change the style of the site, you’d have to
change every single file—not what you want. But luckily, there is a better
way. Here’s what you’re going to do:

Take the rules in “lounge.html” and place
them in a file called “lounge.css”.

Create an external link to this file from
your “lounge.html” file.

Create the same external links in “elixir.html”
and “directions.html”.

Give all three files a good test drive.

Uh, I think you forgot
to style the elixirs and
directions pages?

1

2

3

4

274 Chapter 7

creating a css file

Creating the “lounge.css” file
You’re going to create a file called “lounge.css” to contain the style rules
for all your Head First Lounge pages. To do that, create a new text file
named “lounge.css” in your text editor.

 h1, h2 {

 font-family: sans-serif;

 color: gray;

 }

 h1 {

 border-bottom: 1px solid black;

 }

 p {

 color: maroon;

 }

green.jpg

lightblue.jpg

blue.jpg
<html>

.

.

.

</html>

directions.html

<html>

.

.

.

</html>

elixir.html

lounge
h1, h2 {

 fon

 col

}

p {

lounge.css

beveragesabout images

drinks.gif

red.jpg

<html>

.

.

.

</html>

lounge.html

Create “lounge.css” in
the “lounge” folder
(the root folder).

Now type, or copy and paste from your “lounge.html” file, the CSS rules
into the “lounge.css” file. Delete the rules from your “lounge.html” file
while you’re at it.

Note that you should not copy the <style> and </style> tags because
the “lounge.css” file contains only CSS, not HTML.

Your “lounge.css” file
should look like this.
Remember, no <style> tags!

We often call CSS
files “stylesheets.”

you are here 4 275

getting started with css

HTML Up Close

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge</title>
 <link type="text/css" rel="stylesheet" href="lounge.css">
 <style>
 </style>

 </head>
 <body>
 <h1>Welcome to the Head First Lounge</h1>
 <p>

 </p>
 .
 .
 .
 </p>
 </body>
</html>

Linking from “lounge.html” to the external stylesheet
Now we need a way to tell the browser that it should style this page with the
styles in the external stylesheet. We can do that with the HTML <link>
element. Here’s how you use the <link> element in your HTML:

Here’s the HTML that links
to the external stylesheet.

You don’t need the <style> element anymore—just delete it.

The rest of the HTML is the same.

Let’s take a closer look at the <link> element since you haven’t seen it before:

<link type="text/css" rel="stylesheet" href="lounge.css">

Use the link elem
ent

to “link in” ext
ernal

information.

The type of this information is “text/css”—
in other words, a CSS stylesheet. As of
HTML5, you don't need this anymore (it's
optional), but you may see it on older pages.

And the stylesheet is located at this href (in this case, we’re using a relative link, but it could be a full-blown URL).

The rel attribute specifies the relationship between the
HTML file and the thing you’re linking to. We’re linking to
a stylesheet, so we use the value “stylesheet”.

<link> is a void element. It has no closing tag.

276 Chapter 7

creating an external link

Linking from “elixir.html” and “directions.html”
to the external stylesheet
Now you’re going to link the “elixir.html” and “directions.html” files just
as you did with “lounge.html”. The only thing you need to remember is
that “elixir.html” is in the “beverages” folder, and “directions.html” is in the

“about” folder, so they both need to use the relative path “../lounge.css”.

So, all you need to do is add the following <link> element to both files:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge Elixirs</title>
 <link type="text/css" rel="stylesheet" href="../lounge.css">
 </head>
 <body>
 .
 .
 .
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge Directions</title>
 <link type="text/css" rel="stylesheet" href="../lounge.css">
 </head>
 <body>
 .
 .
 .
 </body>
</html>

This is “elixir.html”. Just add the <link> line.

Same for “directions.html”. Add the <link> line here.

you are here 4 277

getting started with css

Test driving the entire lounge…
Save each of these files and then open

“lounge.html” with the browser. You should
see no changes in its style, even though the
styles are now coming from an external file.
Now click on the “elixirs” and “detailed
directions” links.

Wow! We have a whole new style for the
Elixirs and Directions pages with only a one-
line change to the HTML in each file! Now you
can really see the power of CSS.

278 Chapter 7

use css for flexibility

The Case of Brute Force Versus Style
So, how did RadWebDesign become web page superheroes?
Or maybe we should first ask how the “do no wrong”
CorrectWebDesign firm flubbed things up this time? The
root of the problem was that CorrectWebDesign was creating
the RobotsRUs pages using circa-1998 techniques. They

were putting their style rules right in with their
HTML (copying and pasting them each time),
and, even worse, they were using a lot of old
HTML elements like and <center>
that have now been deprecated (eliminated

from HTML). So, when the call came to change
the look and feel, that meant going into every web

page and making changes to the CSS. Worse, it meant
going through the HTML to change elements as well.

Compare that with what RadWebDesign did: they used
HTML5, so they had no old presentation HTML in their
pages, and they used an external stylesheet. The result? To
change the style of the entire site, all they had to do was
go into their external stylesheet and make a few changes to
the CSS, which they easily did in minutes, not days. They
even had time to try out multiple designs and have three
different versions of the CSS ready for review before the site
launch. Amazed, the RobotsRUs CEO not only promised
RadWebDesign more business, but he also promised them
the first robot that comes off the assembly line.

Five-Minute
Mystery

Solved

you are here 4 279

getting started with css

Now that you’ve got one external style file (or “stylesheet”), use it to change all the
paragraph fonts to “sans-serif” to match the headings. Remember, the property to
change the font style is “font-family”, and the value for sans-serif font is “sans-serif”.
You’ll find the answer on the next page.

The headings use sans-serif fonts,
which don’t have serifs and have a
very clean look.

The paragraphs still use the
default serif fonts, which
have serifs, and are often
considered more difficult to
read on a computer screen.

Serifs

280 Chapter 7

understanding inheritance

Just add a font-family property
to your paragraph rule in the
“lounge.css” file.

I’m wondering if that is really the best
solution. Why are we specifying the font-family
for EACH element? What if someone added a

<blockquote> to the page—would we have to then
add a rule for that too? Can’t we just tell the

whole page to be sans-serif?

h1, h2 {
 font-family: sans-serif;
 color: gray;
}

h1 {
 border-bottom: 1px solid black;
}

p {
 font-family: sans-serif;
 color: maroon;
}

Now that you’ve got one external style file (or “stylesheet”), use it to change
all the paragraph fonts to “sans-serif” to match the headings. Remember, the
property to change the font style is “font-family”, and the value for sans-serif
font is “sans-serif”. Here’s our solution.

you are here 4 281

getting started with css

html

body

p

img

p

a

h2

em

h1 p

a

The elements inside the p element inherit the
font-family style from p

It’s time to talk about your inheritance…
Did you notice when you added the font-family
property to your p selector that it also affected the
font family of the elements inside the <p> element?
Let’s take a closer look:

When you added the
font-family property to your
CSS p selector, it changed
the font family of your <p>
elements. But it also changed
the font family of the two links
and the emphasized text.

Just like you can inherit your blue eyes or brown hair from your parents, elements can
inherit styles from their parents. In this case, the <a> and elements inherited the
font-family style from the <p> element, which is their parent element. It makes sense
that changing your paragraph style would change the style of the elements in the paragraph,
doesn’t it? After all, if it didn’t, you’d have to go in and add CSS rules for every inline
element in every paragraph in your whole site…which would definitely be so NOT fun.

Let’s take a look at the HTML tree to see how inheritance works:

Not to mention,
error-prone, tedious,
and time-consuming

The <a>, , and <a>
elements in the two
paragraphs inherit the
font-family from their
parent elements, the
<p> elements.

The <p> elements, of course, would

be styled with the font-family.

Not every style is
inherited. Just some
are, like font-family.

If we set the font-family of all the <p> elements,
here are all the elements that would be affected.

The element is
a child of a paragraph,
but it doesn’t have
any text, so it’s not
affected.

282 Chapter 7

moving rules to the body element

html

body

p

img

p

a

h2

em

h1 p

a

What if we move the font up the family tree?

We’re going to move the font-family

property from the paragraphs and

headings to the body.

If most elements inherit the font-family property, what if we move it up to
the <body> element? That should have the effect of changing the font for all
the <body> element’s children, and children’s children.

body {
 font-family: sans-serif;
}

h1, h2 {
 font-family: sans-serif;
 color: gray;
}

h1 {
 border-bottom: 1px solid black;
}

p {
 font-family: sans-serif;
 color: maroon;
}

Wow, this is powerful. Simply by changing the
font-family property in the body rule, we
could change the font for an entire site.

What are you waiting for…give it a try

Here’s what you’re going to do.

 First, add a new rule that selects
the <body> element. Then add the
font-family property with a value
of sans-serif.

Then, take the font-family
property out of the h1, h2
rule, as well as the p rule.

Now all these elements are going
to inherit the font-family.

Remember,
images don’t
have text.

And so are their children.

Open your “lounge.css” file and add a new rule that selects the <body> element.
Then remove the font-family properties from the headings and paragraph
rules, because you’re not going to need them anymore.

you are here 4 283

getting started with css

Test drive your new CSS
As usual, go ahead and make these changes in the “lounge.css”
stylesheet, save, and reload the “lounge.html” page. You shouldn’t
expect any changes, because the style is the same. It’s just coming
from a different rule. But you should feel better about your CSS,
because now you can add new elements to your pages and they’ll
automatically inherit the sans-serif font.

Okay, so now that the whole site is set
to sans-serif with the body selector, what

if I want one element to be a different
font? Do I have to take the font-family
out of the body and add rules for every

element separately again?

Surprise, surprise. This doesn’t look any
different at all, but that is exactly what we
were expecting, isn’t it? All you’ve done is move
the sans-serif font up into the body rule and
let all the other elements inherit that.

284 Chapter 7

when you don’t want to inherit

Overriding inheritance
By moving the font-family property up into the body, you’ve set that
font style for the entire page. But what if you don’t want the sans-serif
font on every element? For instance, you could decide that you want
elements to use the serif font instead.

The font-family property is set
in the body rule, so every elem

ent

inside the body inherits the
sans-serif font-family property
from <body>.

But you’ve decided you want your elements to have the serif font-family instead. You need to override the inheritance with a CSS rule.

body {
 font-family: sans-serif;
}

h1, h2 {
 color: gray;
}

h1 {
 border-bottom: 1px solid black;
}

p {
 color: maroon;
}

em {
 font-family: serif;
}

Well, then you can override the inheritance by supplying a
specific rule just for . Here’s how you add a rule for
to override the font-family specified in the body:

To override the font-family property
inherited from body, add a new rule
selecting em with the font-family
property value set to serif.

html

body

p

img

p

a

h2

em

h1 p

a

you are here 4 285

getting started with css

Test drive
Add a rule for the element to your CSS with a
font-family property value of serif, and reload
your “lounge.html” page:

Notice that the “Dance Dance
Revolution” text, which is the
text in the element, is
now a serif font.

As a general rule, it’s not a good idea to change
fonts in the middle of a paragraph like this, so go
ahead and change your CSS back to the way it was
(without the em rule) when you’re done testing.

Q: How does the browser know which
rule to apply to when I’m overriding
the inherited value?

A: With CSS, the most specific rule
is always used. So, if you have a rule for
<body>, and a more specific rule for
elements, it is going to use the more specific
rule. We’ll talk more later about how you
know which rules are most specific.

Q: How do I know which CSS
properties are inherited and which are
not?

A: This is where a good reference really
comes in handy, like O’Reilly’s CSS Pocket
Reference. In general, all of the styles that
affect the way your text looks, such as font
color (the color property), the font-family,
as you’ve just seen, and other font-related
properties such as font-size, font-weight (for
bold text), and font-style (for italics) are

inherited. Other properties, such as border,
are not inherited, which makes sense, right?
Just because you want a border on your
<body> element doesn’t mean you want it
on all your elements. A lot of the time, you
can follow your common sense (or just try
it and see), and you’ll get the hang of it as
you become more familiar with the various
properties and what they do.

Q: Can I always override a property
that is being inherited when I don’t want
it?

A: Yes. You can always use a more
specific selector to override a property from
a parent.

Q: This stuff gets complicated. Is there
any way I can add comments to remind
myself what the rules do?

A: Yes. To write a comment in your
CSS, just enclose it between /* and */. For
instance:
/* this rule selects all
paragraphs and colors them
blue */

Notice that a comment can span multiple
lines. You can also put comments around
CSS and browsers will ignore it, like this:

/* this rule will have no
effect because it's in a
comment

p { color: blue; } */

Make sure you close your comments
correctly; otherwise, your CSS won’t work!

286 Chapter 7

styling individual paragraphs

Green
text
Blue text

Purple text

Red text…oh, we
don’t need to
change this one.

Can you style each of these paragraphs separately
so that the color of the text matches the drink? The
problem is that using a rule with a p selector applies the
style to all <p> elements. So, how can you select these
paragraphs individually?

That’s where classes come in. Using both HTML and
CSS, we can define a class of elements, and then apply
styles to any element that belongs to that class. So, what
exactly is a class? Think of it like a club—someone starts
a “greentea” club, and by joining you agree to all the
rights and responsibilities of the club, like adhering to
their style standards. Anyway, let’s just create the class
and you’ll see how it works.

Creating a class takes two steps: first, we add the
element to the class by adding a class attribute to the
element in the HTML; second, we select that class in
the CSS. Let’s step through that…

We’re not sure we agree with the
aesthetics of that suggestion, but
hey, you’re the customer.

I was thinking it would be
cool to have the text below

each elixir match the color of
the elixir. Can you do that?

you are here 4 287

getting started with css

Adding an element to the greentea class
Open up the “elixir.html” file and locate the “Green Tea Cooler” paragraph.
This is the text we want to change to green. All you’re going to do is add the <p>
element to a class called greentea. Here’s how you do that:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge Elixirs</title>
 <link type="text/css" rel="stylesheet" href="../lounge.css">
 </head>
 <body>
 <h1>Our Elixirs</h1>
 <h2>Green Tea Cooler</h2>
 <p class="greentea">

 Chock full of vitamins and minerals, this elixir
 combines the healthful benefits of green tea with
 a twist of chamomile blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p>

 Combining raspberry juice with lemon grass,
 citrus peel and rosehips, this icy drink
 will make your mind feel clear and crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p>

 Blueberries and cherry essence mixed into a base
 of elderflower herb tea will put you in a relaxed
 state of bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>

 Wake up to the flavors of cranberry and hibiscus
 in this vitamin C rich elixir.
 </p>
 </body>
</html>

To add an element to a class, just add
the attribute “class” along with the
name of the class, like “greentea”.

Now that the green tea paragraph belongs to the greentea class, you just need to
provide some rules to style that class of elements.

288 Chapter 7

class selectors

Creating a class selector

 body {
 font-family: sans-serif;
 }

 h1, h2 {
 color: gray;
 }

 h1 {
 border-bottom: 1px solid black;
 }

 p {
 color: maroon;
 }

 p.greentea {
 color: green;
 }

To create a class in CSS and select an element in that class, you write a
class selector, like this:

 p.greentea {
 color: green;
 }

Then use a “.” to
specify a class.

The selector p.greentea selects all paragraphs in the greentea class.

Select the
element in the
class first—in
this case, p.

Last is the
class name.

And here’s the rule…make any text in a paragraph in the greentea class the color green.

So now you have a way of selecting <p> elements that belong to a certain class to
style them. All you need to do is add the class attribute to any <p> elements you
want to be green, and this rule will be applied. Give it a try: open your “lounge.css”
file and add the p.greentea class selector to it.

you are here 4 289

getting started with css

Your turn: add two classes, “raspberry” and “blueberry”, to the correct
paragraphs in “elixir.html”, and then write the styles to color the text blue and
purple, respectively. The property value for raspberry is “blue” and for blueberry
is “purple”. Put these at the bottom of your CSS file, under the greentea rule:
raspberry first, and then blueberry.

A greentea test drive
Save and then reload to give your new class a test drive.

Here’s the new greentea
class applied to the
paragraph. Now the font
is green and matches the
Green Tea Cooler. Maybe
this styling wasn’t such a
bad idea after all.

Yeah, we know you’re probably thinking, how
can a raspberry be blue? Well, if Raspberry
Kool-Aid is blue, that’s good enough for us.
And seriously, when you blend up a bunch of
blueberries, they really are more purple than
blue. Work with us here.

290 Chapter 7

dealing with class selectors

Taking classes further…
You’ve already written one rule that uses the greentea class to change any
paragraph in the class to the color “green”:

 p.greentea {
 color: green;
 }

But what if you wanted to do the same to all <blockquote>s?
Then you could do this:

 blockquote.greentea, p.greentea {
 color: green;
 }

Just add another selector to handle
<blockquote>s that are in the greentea
class. Now this rule will apply to <p>
and <blockquote> elements in the
greentea class.

So what if I want to
add <h1>, <h2>, <h3>, <p>, and

<blockquote> to the greentea
class? Do I have to write one

huge selector?

No, there’s a better way. If you want all
elements that are in the greentea class to
have a style, then you can just write your
rule like this:

 .greentea {
 color: green;
 }

If you leave out all the element names,
and just use a period followed by a class
name, then the rule will apply to all
members of the class.

And in your HTML you’d write:

<blockquote class="greentea">

you are here 4 291

getting started with css

Cool! Yes, that works. One
more question…you said being in

a class is like being in a club. Well,
I can join many clubs. So, can an

element be in more than one class?

It’s easy to put an element into more than one class. Say
you want to specify a <p> element that is in the greentea,
raspberry, and blueberry classes. Here’s how you would
do that in the opening tag:

Yes, elements can be in more than one class.

<p class="greentea raspberry blueberry">

Place each class
name into the
value of the class
attribute, with a
space in between
each. The ordering
doesn’t matter.

Now you may be wondering what happens when an element belongs
to multiple classes, all of which define the same property—like our <p>
element up there. How do you know which style gets applied? You know
each of these classes has a definition for the color property. So, will the
paragraph be green, blue (raspberry), or purple?

We’re going to talk about this in great detail after you’ve learned a bit
more CSS, but on the next page you’ll find a quick guide to hold you over.

So, for example, I
could put an <h1> into my “products”
class that defines a font size and
weight, and also a “specials” class
to change its color to red when

something’s on sale?

Exactly. Use multiple classes when you want
an element to have styles you’ve defined in
different classes. In this case, all your <h1>
elements associated with products have a
certain style, but not all your products are on
sale at the same time. By putting your “specials”
color in a separate class, you can simply add
only those elements associated with products on
sale to the “specials” class to add the red color
you want.

292 Chapter 7

guide to applying styles

The world’s smallest and fastest guide to
how styles are applied
Elements and document trees and style rules and classes…it can get downright confusing.
How does all this stuff come together so that you know which styles are being applied to
which elements? As we said, to fully answer that you’re going to have to know a little more
about CSS, and you’ll be learning that in the next few chapters. But before you get there,
let’s just walk through some common-sense rules of thumb about how styles are applied.

First, do any selectors select your element?
Let’s say you want to know the font-family property value for an element. The first thing
to check is: is there a selector in your CSS file that selects your element? If there is, and it
has a font-family property and value, then that’s the value for your element.

What about inheritance?
If there are no selectors that match your element, then you rely on inheritance. So, look at
the element’s parents, and parents’ parents, and so on, until you find the property defined.
When and if you find it, that’s the value.

Struck out again? Then use the default
If your element doesn’t inherit the value from any of its ancestors, then you use the default
value defined by the browser. In reality, this is a little more complicated than we’re describing
here, but we’ll get to some of those details later in the book.

What if multiple selectors select an element?
Ah, this is the case we have with the paragraph that belongs to all three classes:

There are multiple selectors that match this element and define the same color property.
That’s what we call a conflict. Which rule breaks the tie? Well, if one rule is more specific than
the others, then it wins. But what does “more specific” mean? We’ll come back in a later
chapter and see exactly how to determine how specific a selector is, but for now, let’s look at
some rules and get a feel for it:

p { color: black;}

.greentea { color: green; }

p.greentea { color: green; }

p.raspberry { color: blue; }

p.blueberry { color: purple; }

Here’s a rule that selects any
old paragraph element.

This rule selects members of the greentea
class. That’s a little more specific.

And this rule selects only paragraphs that are in
the greentea class, so that’s even more specific.

These rules also select only paragraphs in a
particular class. So they are about the same
in specificity as the p.greentea rule.

<p class="greentea raspberry blueberry">

you are here 4 293

getting started with css

And if we still don’t have a clear winner?
So, if you had an element that belonged only to the greentea class, there
would be an obvious winner: the p.greentea selector is the most specific,
so the text would be green. But you have an element that belongs to all
three classes: greentea, raspberry, and blueberry. So, p.greentea,
p.raspberry, and p.blueberry all select the element, and are of equal
specificity. What do you do now? You choose the one that is listed last in
the CSS file. If you can’t resolve a conflict because two selectors are equally
specific, you use the ordering of the rules in your stylesheet file; that is, you
use the rule listed last in the CSS file (nearest the bottom). And in this case,
that would be the p.blueberry rule.

In your “elixir.html” file, change the greentea paragraph to include all the classes, like this:

<p class="greentea raspberry blueberry">

Save and reload. What color is the Green Tea Cooler paragraph now?

Next, reorder the classes in your HTML:

<p class="raspberry blueberry greentea">

Save and reload. What color is the Green Tea Cooler paragraph now?

Next, open your CSS file and move the p.greentea rule to the bottom of the file.

Save and reload. What color is the Green Tea Cooler paragraph now?

Finally, move the p.raspberry rule to the bottom of the file.

Save and reload. What color is the Green Tea Cooler paragraph now?

After you’ve finished, rewrite the green tea element to look like it did originally:

<p class="greentea">

Save and reload. What color is the Green Tea Cooler paragraph now?

294 Chapter 7

language comparison: css and html

Tonight’s talk: CSS & HTML compare languages

CSS:

Did you see that? I’m like Houdini! I broke right
out of your <style> element and into my own file.
And you said in Chapter 1 that I’d never escape.

Have to link me in? Come on; you know your pages
wouldn’t cut it without my styling.

If you were paying attention in this chapter, you
would have seen I’m downright powerful in what I
can do.

Well now, that’s a little better. I like the new attitude.

HTML:

Don’t get all excited; I still have to link you in for
you to be at all useful.

Here we go again…while me and all my elements
are trying to keep things structured, you’re talking
about hair highlights and nail color.

Okay, okay, I admit it; using CSS sure makes my
job easier. All those old deprecated styling elements
were a pain in my side. I do like the fact that my
elements can be styled without inserting a bunch
of stuff in the HTML, other than maybe an
occasional class attribute.

But I still haven’t forgotten how you mocked my
syntax…<remember>?

you are here 4 295

getting started with css

CSS:

You have to admit HTML is kinda clunky, but
that’s what you get when you’re related to an early
’90s technology.

Are you kidding? I’m very expressive. I can select
just the elements I want, and then describe exactly
how I want them styled. And you’ve only just
begun to see all the cool styling I can do.

Yup; just wait and see. I can style fonts and text in
all kinds of interesting ways. I can even control
how each element manages the space around it on
the page.

Bwahahaha. And you thought you had me
controlled between your <style> tags. You’re
going to see I can make your elements sit, bark,
and roll over if I want to.

HTML:

I call it standing the test of time. And you think
CSS is elegant? I mean, you’re just a bunch of rules.
How’s that a language?

Oh yeah?

Hmmm…sounds as if you have a little too much
power; I’m not sure I like the sound of that. After
all, my elements want to have some control over
their own lives.

Whoa now! Security…security?!

296 Chapter 7

testing your inheritance skills

Who gets the inheritance?
Sniff, sniff; the <body> element has gone to that great browser in the sky. But he left
behind a lot of descendants and a big inheritance of color “green”. Below, you’ll find his
family tree. Mark all the descendants that inherit the <body> element’s color green. Don’t
forget to look at the CSS below first.

body {
 color: green

;

}

p {
 color: black

;

}

Here’s the CSS. Use this to
determine which of the above
elements hit the jackpot and
get the green (color).

body

p h2

a em

p

a

em em a

h2

img

h1 blockquote

p p

you are here 4 297

getting started with css

<style>

body {
 background-color: white

h1, {
 gray;
 font-family: sans-serif;
}

h2, p {
 color:
}

 {
 font-style: italic;
}

</style>

The file “style.css”

If you have errors in your CSS,
usually what happens is all the rules
below the error are ignored. So,
get in the habit of looking for
errors now, by doing this exercise.

BE the Browser
Below, you’ll find the CSS file “style.
css”, with some errors in it. Your job
is to play like you’re the browser

and locate all the errors.
After you’ve done the
exercise, look at the end
of the chapter to see if
you caught all the errors.

298 Chapter 7

validating css

The exercise got me
thinking…is there a way

to validate CSS like there is
with HTML?

Those W3C boys and girls aren’t just sitting
around on their butts, they’ve been working hard.
You can find their CSS validator at:

http://jigsaw.w3.org/css-validator/

Type that URL in your browser, and we think
you’ll feel quite at home when you get there.
You’re going to find a validator that works almost
exactly like the HTML
validator. To use the CSS
version, just point the
validator to your CSS
URL, upload a file with
your CSS in it (first tab),
or just paste it into the
form (second tab), and
submit.

You shouldn’t encounter
any big surprises, like
needing doctypes or
character encodings with
CSS. Go ahead, give it a
try (like we’re not going
to make you do it on the
next page, anyway).

Of course!

you are here 4 299

getting started with css

Making sure the lounge CSS validates
Before you wrap up this chapter, wouldn’t you feel a lot better if all that Head First
Lounge CSS validated? Sure, you would. Use whichever method you want to get
your CSS to the W3C. If you have your CSS on a server, type your URL into the
form; otherwise, either upload your CSS file or just copy and paste the CSS into
the form. (If you upload, make sure you’re directing the form to your CSS file, not
your HTML file.) Once you’ve done that, click on Check.

Yay! Our CSS validates as CSS 2.1 (the validator hasn't upgraded to CSS 3 yet, but if it has by the time you read this, it should still validate).

Here are some icons you can put
on your web page if you want to
show off that your CSS validates.
(You can get similar icons for
validated HTML, too.)

If your CSS didn’t validate, check
it with the CSS a few pages back
and find any small mistakes you’ve
made, then resubmit.

Q: Do I need to worry if I get
warnings? Or do what they say?

A: It’s good to look them over, but you’ll
find some are more in the category of
suggestions than “must do’s.” The validator
can err on the side of being a little anal, so
just keep that in mind.

Just like when you validate HTML
correctly, you get the “green badge
of success” when you pass validation
for your CSS. Green is good!

300 Chapter 7

getting a feel for some css properties

CSS has a lot of style properties.
You’ll see quite a few of these in
the rest of this book, but have a

quick look now to get an idea
of all the aspects of style
you can control with CSS.

font
-wei

ght

list-s
tyle

padding

border

bac
kgr

oun
d-i

mag
e

letter-spacing

This property contro
ls

the weight of text. Use

it to make text bold.

This lets you set the spacing between
letters. L i k e t h i s.

Use this property to
put an image behind
an element..

This property sets the
space between lines in a
text element.

This property puts a border around an element. You can have a solid border, a ridged border, a dotted border…

If you need space
between the edge of
an element and its
content, use padding.

font
-sty

le

Use this property for
italic or oblique text.

This property lets
you change how list
items look in a list.

font-size

Makes text
bigger or smaller.

color

Use color to set the font color of text elements. background-color

This property controls the
background color of an element.

left
This is how you tell an
element how to position
its left side.

text-alig
n
Use this property to align
your text to the left,
center, or right.

top
Controls the
position of the
top of the
element.

Property
Soup

line-height

you are here 4 301

getting started with css

It looks like you’re getting
the hang of this style stuff.
We’re looking forward to seeing

what you come up with in the next
couple of chapters.

 � CSS contains simple statements, called rules.

 � Each rule provides the style for a selection of HTML
elements.

 � A typical rule consists of a selector along with one or
more properties and values.

 � The selector specifies which elements the rule
applies to.

 � Each property declaration ends with a semicolon.

 � All properties and values in a rule go between { }
braces.

 � You can select any element using its name as the
selector.

 � By separating element names with commas, you can
select multiple elements at once.

 � One of the easiest ways to include a style in HTML is
the <style> tag.

 � For HTML and for sites of any complexity, you should
link to an external stylesheet.

 � The <link> element is used to include an external
stylesheet.

 � Many properties are inherited. For instance, if
a property that is inherited is set for the <body>
element, all the <body>’s child elements will inherit it.

 � You can always override properties that are inherited
by creating a more specific rule for the element you’d
like to change.

 � Use the class attribute to add elements to a class.

 � Use a “.” between the element name and the class
name to select a specific element in that class.

 � Use “.classname” to select any elements that belong
to the class.

 � You can specify that an element belongs to more
than one class by placing multiple class names in the
class attribute with spaces between the names.

 � You can validate your CSS using the W3C validator,
at http://jigsaw.w3.org/css-validator.

302 Chapter 7

time for some mental pushups

HTMLcross
Here are some clues with mental twist and turns that will help you burn
alternative routes to CSS right into your brain!

1 2

3 4

5 6 7

8 9

10

11 12 13

14

15

Across
3. Styles are defined in these.
5. Selects an element.
8. Each rule defines a set of properties and ________.
10. Defines a group of elements.
11. Property that represents font color.
13. Ornamental part of some fonts.
14. How elements get properties from their
parents.
15. Property for font type.

Down
1. Fonts without serifs.
2. You can place your CSS inside these tags in an
HTML file.
4. An external style file is called this.
6. With inheritance, a property set on one element is also
passed down to its _______.
7. Won this time because they used external style
sheets.
9. They really wanted some style.
12. Use this element to include an external style
sheet.

Across
3. Styles are defined in these.
5. Selects an element.
8. Each rule defines a set of properties and

 ________.
10. Defines a group of elements.
11. Property that represents font color.
13. Ornamental part of some fonts.
14. How elements get properties from their parents.
15. Property for font type.

Down
1. Fonts without serifs.
2. You can place your CSS inside these tags in an

HTML file.
4. An external style file is called this.
6. With inheritance, a property set on one element is

also passed down to its _______.
7. Won this time because they used external

stylesheets.
9. They really wanted some style.
12. Use this element to include an external stylesheet.

you are here 4 303

getting started with css

Markup Magnets Solution
Remember drawing the hierarchy diagram of HTML elements
in Chapter 3? You did that again for the Lounge’s main page.
Here’s our solution.

title

html

html

head body

title p

q

Like this

img

h1

em

head

stylemeta

body

h2 pp p

a a

The selected elements are colored:

p, h2 {

 font-family: sans-serif;

}

p, em {

 font-family: sans-serif;

}

html

body

p

img

p

a

h2

em

h1 p

a

html

body

p

img

p

a

h2

em

h1 p

a

304 Chapter 7

exercise solutions

Your turn: add two classes, “raspberry” and “blueberry” to the
correct paragraphs in “elixir.html” and then write the styles
to color the text blue and purple, respectively. The property
value for raspberry is “blue” and for blueberry is “purple”.

body {
 font-family: sans-serif;
}

h1, h2 {
 color: gray;
}

h1 {
 border-bottom: 1px solid black;
}

p {
 color: maroon;
}

p.greentea {
 color: green;
}

p.raspberry {
 color: blue;
}

p.blueberry {
 color: purple;
}

you are here 4 305

getting started with css

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Head First Lounge Elixirs</title>
 <link type="text/css" rel="stylesheet" href="../lounge.css">
 </head>
 <body>
 <h1>Our Elixirs</h1>
 <h2>Green Tea Cooler</h2>
 <p class="greentea">

 Chock full of vitamins and minerals, this elixir
 combines the healthful benefits of green tea with
 a twist of chamomile blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p class="raspberry">

 Combining raspberry juice with lemon grass,
 citrus peel and rosehips, this icy drink
 will make your mind feel clear and crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p class="blueberry">

 Blueberries and cherry essence mixed into a base
 of elderflower herb tea will put you in a relaxed
 state of bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>

 Wake up to the flavors of cranberry and hibiscus
 in this vitamin C rich elixir.
 </p>
 </body>
</html>

306 Chapter 7

exercise solutions

body

p h2

a em

p

a

em em a

h2

img

h1 blockquote

p p

h1 and h2 get the inheritance
because they don’t have a color
property, so they inherit their
color from body. Lucky them!

There are no CSS rules for blockquote, so blockquote also inherits its color from body. (But since p overrides the color to black, the blockquote color won’t matter.)

This one em is fortunate to be a child of h2, which inherits the body color. Since there’s no em rule overriding the color with its own property, this em inherits body’s color.

Unfortunately for these em
elements, they are children
of parents that override the
body color, the p element.
So they don’t get any color
inheritance from body.

And these poor a elements are
also children of p, so they d

on’t

inherit the body color eithe
r.

img is a child of p, so img
doesn’t inherit the color from
body. img wouldn’t get a color
inheritance anyway (poor guy).

Who gets the inheritance?
body {
 color: green

;

}

p {
 color: black

;

}

Sniff, sniff; the <body> element has gone to that
great browser in the sky. But he left behind a lot of
descendants and a big inheritance of color “green”.
Below, you’ll find his family tree. Mark all the
descendants that inherit the <body> element’s color
green. Don’t forget to look at the CSS below first.
Here’s our solution:

you are here 4 307

getting started with css

<style>

body {

 background-color: white

h1, {

 gray;

 font-family: sans-serif;

}

h2, p {

 color:

}

 {

 font-style: italic;

}

</style>

BE the Browser Solution
Below, you’ll find the CSS file with
some errors in it. Your job was to
play like you’re the browser and

locate all the errors.
Did you find them all?

No HTML in your CSS! The
<style> tags are HTML and don’t
work in a CSS stylesheet.

Missing semicolon

Missing }
Extra comma

Missing property name
and colon

Missing property value and semicolon

Using the HTML tag instead of just the
element name. This should be em.

No </style> tags needed in the CSS

308 Chapter 7

exercise solutions

It’s purple because
the blueberry rule is
last in the CSS file.

It’s still purple because
the ordering of the
names in the class
attribute doesn’t matter.

Now, it’s green, because
the greentea rule comes
last in the CSS file.

Now, it’s blue, because
the raspberry rule comes
last in the CSS file.

Okay, now the <p>
element only belongs
to one class, so we use
the most specific rule,
which is p.greentea.

In your “elixir.html” file, change the greentea paragraph to include all the classes,
like this:

<p class="greentea raspberry blueberry">

Save and reload. What color is the Green Tea Cooler paragraph now?

Next, reorder the classes in your HTML:

<p class="raspberry blueberry greentea">

Save and reload. What color is the Green Tea Cooler paragraph now?

Next, open your CSS file and move the p.greentea rule to the bottom of the file.

Save and reload. What color is the Green Tea Cooler paragraph now?

Finally, move the p.raspberry rule to the bottom of the file.

Save and reload. What color is the Green Tea Cooler paragraph now?

After you’ve finished, rewrite the green tea element to look like it did originally:

<p class="greentea">

Save and reload. What color is the Green Tea Cooler paragraph now?

purple

purple

green

blue

green

you are here 4 309

getting started with css

HTMLcross Solution

S1 S2

R3 U L E S4 A T

T N Y

Y S5 E L E C6 T O R7

V8 A L U E S E H A L9

E E I D O

C10 L A S S R L W U

H I D E N

C11 O L12 O R S13 E R I F R B G

I E E D E

I14 N H E R I T A N C E N E G

K S U

F15 O N T – F A M I L Y

G S

N

Across
3. Styles are defined in these. [RULES]
5. Selects an element. [SELECTOR]
8. Each rule defines a set of properties and ________.
[VALUES]
10. Defines a group of elements. [CLASS]
11. Property that represents font color. [COLOR]
13. Ornamental part of some fonts. [SERIF]
14. How elements get properties from their
parents. [INHERITANCE]
15. Property for font type. [FONT–FAMILY]

Down
1. Fonts without serifs. [SANSSERIF]
2. You can place your CSS inside these tags in an
HTML file. [STYLE]
4. An external style file is called this. [STYLESHEET]
6. With inheritance, a property set on one element is also
passed down to its _______. [CHILDREN]
7. Won this time because they used external style
sheets. [RADWEBDESIGN]
9. They really wanted some style. [LOUNGEGUYS]
12. Use this element to include an external style
sheet. [LINK]

this is a new chapter 311

Vocabulary

Your CSS language lessons are coming along nicely. You already

have the basics of CSS down, and you know how to create CSS rules to select and specify

the style of an element. Now it’s time to build your vocabulary, and that means picking up

some new properties and learning what they can do for you. In this chapter we’re going

to work through some of the most common properties that affect the display of text. To do

that, you’ll need to learn a few things about fonts and color. You’re going to see you don’t

have to be stuck with the fonts everyone else uses, or the clunky sizes and styles the

browser uses as the defaults for paragraphs and headings. You’re also going to see there

is a lot more to color than meets the eye.

styling with fonts and colors8

Expanding Your

312 Chapter 8

common text properties

A lot of CSS properties are dedicated to helping you style your text. Using
CSS, you can control font, style, color, and even the decorations that are put
on your text, and we’re going to cover all these in this chapter. We’ll start by
exploring the actual fonts that are used to display your pages. You’ve already
seen the font-family property, and in this chapter you’re going to learn a
lot more about specifying fonts.

Before we dive in, let’s get the 30,000-foot view of some properties you can
use to specify and change the look of your fonts. After that, we’ll take the
fonts one by one and learn the ins and outs of using each.

Text and fonts from 30,000 feet

body {
 font-size: 14px;
}

body {
 font-family: Verdana, Geneva, Arial, sans-serif;
}

Customize the fonts in your pages with the font-family property.
Fonts can have a dramatic effect on your page designs. In CSS, fonts are
divided into “font families” from which you can specify the fonts you’d
like used in each element of your page. Only certain fonts are commonly
installed on most computers, so you need to be careful in your font
choices. In this chapter we’ll take you through everything you need to
know to specify and make the best use of fonts.

Control the size of your fonts with the font-size property.
Font size also has a big impact on the design and the readability of your
web pages. There are several ways to specify font sizes with CSS, and in
this chapter we’ll cover each one, but we’ll also teach you how to specify
your fonts in a way that allows your users to increase the font size without
affecting your designs.

body is 14px

p is 14px h2 is 17pxh1 is 21px

Although we’ll see in a bit
how you can expand the fonts
available to your browser.

you are here 4 313

styling with fonts and colors

body {
 color: silver;
}

Add color to your text with the color property.
You can change your text color with the color property. To do that, it
helps to know a little about web colors, and we’ll take you through all the
ins and outs of color, including the mysterious color “hex codes.”

body {
 font-weight: bold;
}

Affect the weight of your fonts with the font-weight property.
Why settle for boring, average fonts when you can give them some extra
weight when needed? Or are your fonts looking too heavy? Slim them down
to a normal weight. All this is easily done with the font-weight property.

body {
 text-decoration: underline;
}

Add even more style to your text with the text-decoration property.
Using the text-decoration property, you can decorate your text with
decorations including overlines, underlines, and line-throughs.

none

underline

overline

line-through

RedOlive

Lime

Aqua Fuchsia

Teal

PurpleNavy

Green

Blue

White Yellow

MaroonGray

Black

Silver

lighter
normal
bold

bolder

314 Chapter 8

overview of font families

What is a font family anyway?
You’ve already come across the font-family property, and so far you’ve
always specified a value of “sans-serif ”. You can get a lot more creative than
that with the font-family property, but it helps to know what a font family
is first. Here’s a quick rundown…

Times

Serif family

Arial

Verdana

Geneva

Sans-serif family

The sans-serif family includes fonts
without serifs. These fonts are
usually considered more readable on
computer screens than serif fonts.

The serif family includes fonts with
serifs. A lot of people associate the look
of these fonts with newspaper print.

Each font-family contains a set of fonts
that share common characteristics. There
are five font families: sans-serif, serif,
monospace, cursive, and fantasy. Each
family includes a large set of fonts, so on
this page you’ll see only a few examples
of each.

Serifs are the
decorative barbs
and hooks on the
ends of the letters.

Sans-serif means
“without serifs.”

Fonts aren’t consistently available from one computer
to another. In fact, the set of available fonts will vary
depending on the operating system as well as what
fonts and applications a user has installed. So keep in
mind that the fonts on your machine may differ from
what is available to your users. And, as we said, we’ll
show you how to extend the set of fonts in a bit…

Times New Roman

Arial Black

Trebuchet MS

Georgia

you are here 4 315

styling with fonts and colors

Courier

Monospace family

Comic Sans

Apple Chancery

Cursive family

The cursive family
includes fonts that
look handwritten. You’ll
sometimes see these fonts
used in headings.

The monospace family is made up of fonts that have constant-
width characters. For instance, the horizontal space an “i”
takes up will be the same width that an “m” takes up. These
fonts are primarily used to show software code examples.

Last NinjA

Impact

Fantasy family

The fantasy font family contains stylized decorative fonts.

Take a good look at the font families: serif
fonts have an elegant, traditional look,
while sans-serif fonts have a very clean and
readable look. Monospace fonts feel like
they were typed on a typewriter. Cursive and
fantasy fonts have a playful or stylized feel.

Andale Mono

Courier New

316 Chapter 8

develop your sense of fonts

Font Magnets
Your job is to help the fictional fonts below find their way home
to their own font family. Move each fridge magnet on the left
into the correct font family on the right. Check your answers
before you move on. Review the font family descriptions on the
previous pages if you need to.

Bainbridge

Palomino

Angel

Iceland

Messenger

Savannah

Crush
Nautica

Quarter

Monospace family

Sans-serif family

Fantasy family

Cursive family

Serif family

you are here 4 317

styling with fonts and colors

Okay, so there are a lot of good fonts out there from several font families. How do you
get them in your pages? Well, you’ve already had a peek at the font-family property
in the last chapter, when you specified a font-family of “sans-serif ” for the lounge.
Here’s a more interesting example:

Specifying font families using CSS

body {

 font-family: Verdana, Geneva, Arial, sans-serif;

}

Check to see if the font
Verdana is available on the
user’s computer and if so,
use it as the font for this
element (in this case, the
<body> element).

You can specify more than one
font using the font-family
property. Just type the font
names separated by commas.

Write font names as they
are spelled, including upper-
and lowercase letters. Always put a generic font family name at the

end, like “serif”, “sans-serif”, “cursive”, or
“monospace”. You’ll see what this does in a sec.

How font-family specifications work
Here’s how the browser interprets the fonts listed in your font-family specification:

body {

 font-family: Verdana, Geneva, Arial, sans-serif;

}

If Verdana isn’t
available, then look
for the font Geneva,
and if it is available,
use it for the body.

Finally, if none of the specific
fonts can be found, just use
whatever the browser considers
its default “sans-serif” font.

You don’t have to specify four alternative fonts; you
can have two, three, etc. In the last chapter, we only
used one—the default sans-serif font—although we
don’t recommend that because it doesn’t give you
much control over the fonts you’d like used.

The font-family property gives you a way to create a list of preferred fonts.
Hopefully, most browsers will have one of your first choices, but if not, you can at least
be assured that the browser will provide a generic font from the same family.

Let’s get some fonts into your pages…

If Geneva isn’t
available, then look for
the font Arial, and if
it is available, use it
for the body.

Usually, your font-family specification contains a
list of alternative fonts, all from the same family.

318 Chapter 8

improving tony’s journal

Dusting off Tony’s journal
Now that you know how to specify fonts, let’s take
another look at Tony’s Segway’n USA page and
give it a different look. We’ll be making some small,
incremental changes to the text styles in Tony’s
page, and while no single change is going to look
dramatically different, by the end of the chapter
we think you’ll agree the site has a slick new look.
Let’s get an idea of where we might make some
improvements and then let’s give Tony a new
font-family.

Remember that we haven’t applied
any styles to Tony’s site, so his site
is using a serif font-family for
the entire page.

The quote is just indented. It
would be nice to improve its look
a bit by adding some font-style.

The default size of the heading fonts
is also pretty large and doesn’t make
for an attractive page.

Except for the photos, this page
is rather monochromatic, so we’ll
also add some font color to make
it a little more interesting.

you are here 4 319

styling with fonts and colors

body {

 font-family: Verdana, Geneva, Arial, sans-serif;

}

Getting Tony a new font-family

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <link type="text/css" rel="stylesheet" href="journal.css">
 <title>My Trip Around the USA on a Segway</title>
 </head>
 <body>
 .
 .
 .
 </body>
</html>

Let’s get Tony set up with a font-family. We’re going to start with
some clean sans-serif fonts. First, create a new file, “journal.css” in the

“chapter8/journal” folder and add this rule:

We've also gone ahead and updated Tony's
journal.html file to be official HTML5,
adding in the doctype and the <meta> tag.

We’ve chosen a set of
sans-serif fonts here.

You’ll see Verdana
on most PCs… …and Geneva on

most Macs.
Arial is
common
on both.

And if all else
fails, we have
the default
sans-serif.

We’re setting the
font-family property
on the <body> element.
Remember, the
elements in the <body>
will inherit these fonts.

After you’ve made this change, save the file, fire up your browser, and load the page.

Now you need to link Tony’s journal to the new stylesheet file. To do that, open the
file “journal.html” in the “chapter8/journal” folder. Add the <link> element to
link in the style in “journal.css”, like we did below.

Here’s where we’re
linking in the new
“journal.css” file.

320 Chapter 8

some font questions

Test driving Tony’s new fonts

The font definitely gives Tony’s web page a new
look. The headings now have a cleaner look without
the serifs on the letters, although they still look a
tad large on the page.

Open the page with the new CSS in the browser and you
should see we’ve now got a nice set of sans-serif fonts.
Let’s check out the changes…

The paragraph text is also
clean and very readable.

Because font-family is an inherited property,
all elements on the page are now using a
sans-serif font, even the list elements…

…and the <blockquote>s.

And if the serif fonts were more your
cup of tea, don’t let us stop you. You can
always redo the font-family declaration
to use serif fonts.

Q: How do I specify a font
with multiple words in the
name, like Courier New?

A: Just put quotes around
the name in your font-family
declaration, like this:
font-family: "Courier
New", Courier;

Q: So the font-family
property is really a set of
alternative fonts?

A: Yes. It’s basically a priority
list of fonts. The first is the font
you’d like used, followed by a
good substitute, followed by
more substitutes, and so on. For
the last font, you should specify
the catch-all generic “sans-serif”
or “serif”, which should be in the
same family as all the fonts in
your list.

Q: Are “serif” and
“sans-serif” real fonts?

A: “serif” and “sans-serif” are
not the names of actual fonts.
However, your browser will
substitute a real font in place of
“serif” or “sans-serif” if the other
fonts before it in the font-family
declaration can’t be found.
The font used in its place will
be whatever the browser has
defined as the default font in
that family.

Q: How do I know which to
use? Serif or sans-serif?

A: There are no rules.
However, on a computer display,
many people consider sans-serif
the best for body text. You’ll find
plenty of designs that use serif
for body text, or mix serif fonts
with sans-serif fonts. So, it really
is up to you and what kind of
look you want your page to have.

you are here 4 321

styling with fonts and colors

How do I deal with everyone having
different fonts?

font-family: Verdana, Geneva, Arial, sans-serif;

The unfortunate thing about fonts is that you
can’t control what fonts are installed on your
users’ computers. Not only that, but they tend
to differ across operating systems—what might
be on your Mac may not be on your user’s PC.

So, how do you deal with that? Well, the tried-
and-true strategy is to create a list of fonts that
are most appropriate for your pages and then
hope the user has one of those fonts installed.
If he doesn’t, well, at least we can count on the
browser to supply a generic font in the same
font family.

Let’s look at how to do that in a little more
detail. What you need to do is ensure that your
font-family declaration includes fonts that
are likely to occur on both Windows and the
Mac (as well as any other platforms your users
might be using, like Linux or perhaps mobile
devices), and that it also ends with a font family.

Here’s an example:

Geneva
Courier

Helvetica

Times

These fonts
are likely to
be available on
both Windows
and Macintosh
computers.

These fonts are
most likely to be
found on Macintosh
computers.

(1) We’d like for
Verdana to be
used, but…

(2) If it’s not, Geneva would
be nice, but this will probably
only happen on Macs. But if
it’s not…

(3) That’s okay, because we
can probably count on Arial
to be on either Windows or
Macs, but if it’s not…

(4) Then that’s still
okay; we’ll just let the
browser choose a sans-
serif font for us.

Let’s take a look at
our definition for Tony’s
pages again…

322 Chapter 8

introducing web fonts

I get how we need to make sure we
specify fonts that will be appropriate all
across all my users’ machines, but I was
really hoping we could use this cool Emblema
One font I found for my main heading. Can I
just use that, and if the users don’t have it

they can use a fallback?

Your suggestion would work, but most likely for only
a very small percentage of your users. If you just
have to have that oh-so-cool font, or typography is
important to your site design, you can actually deliver
a font right to your user’s browser using Web Fonts.

To do this, you’re going to use a newer feature of
CSS: the @font-face rule. This rule allows you to
define the name and location of a font that can then
be used in your page.

Let’s see how this works…

Yes, but there’s a better way…

you are here 4 323

styling with fonts and colors

How Web Fonts work
With Web Fonts you can take advantage of a new capability of modern browsers that allows
you to deliver new fonts directly to your users. Once the font is delivered, the browser can
then make use of the Web Font just like it can any other font, and you can even style your
text with CSS. Let’s look at how Web Fonts work in a little more detail:

www.starbuzzcoffee.com

Here’s your server.

The font file contains
everything a browser
needs to use the font
in your web page.

abcdefg
hijklmn
opqrstuv
wxyzABCD
EFGHIJKL

crazyfont.woff

Here’s a font file you’ve
stored on your server.

To make use of Web Fonts, the browser first retrieves an
HTML page that references them.

Of course your server stores all
your HTML and CSS too, but
we’re not showing that here.

“I need index.html”

Notice this font uses
a “.woff” file extension,
which means web open
font format.

www.starbuzzcoffee.com

abcdefg
hijklmn
opqrstuv
wxyzABCD
EFGHIJKL

crazyfont.woff

“Here ya go”

<html>...</html>

index.html

1

324 Chapter 8

getting started with web fonts

Hello
World!

Ah, this page
uses Web Fonts, I better

retrieve the fonts I need.
Looks like I need “crazyfont”.

The browser then retrieves the Web Font files needed for
the page.

“I need crazyfont.woff”

www.starbuzzcoffee.com

abcdefg
hijklmn
opqrstuv
wxyzABCD
EFGHIJKL

crazyfont.woff

“Here ya go”

abcdefg
hijklmn
opqrstuv
wxyzABCD
EFGHIJKL

crazyfont.woff

Now, with the font retrieved, the browser uses the font
when it displays the page.

www.starbuzzcoffee.com

abcdefg
hijklmn
opqrstuv
wxyzABCD
EFGHIJKL

crazyfont.woff

Look
Ma! A new font!

Finally, something new
around here!

Q: What’s the woff, or web open font
format?

A: Woff is emerging as the standard
font format for Web Fonts, and you’ll see it
supported today across all modern browsers.
That said, there has previously been some
lack of standardization in this area, with
different browsers supporting different font
formats. If you need to provide Web Fonts
to browsers that may not support woff, you’ll
need to supply one or more of a few formats
that are available as alternatives. Web Font
hosting services can help a lot here.

Q: So to use a Web Font, I have to
host the font files on a server?

A: If you’re just testing fonts you can
actually store and refer to them as local files
on your own file system (just like you do with,
say, an image). But if you want to deliver
fonts to your users on the Web, you either
have to host the files yourself on a server,
or make use of a hosting service, such as
Google’s, which is free.

Q: If I use a Web Font, can I then
count on it being there for my users?

A: As long as they have a modern
browser (and discounting any network
connectivity or server issues), for the most
part, yes. However, if they are using old
browsers or mobile devices that don’t yet
support Web Fonts, all bets are off and you
still need to supply font alternatives (we’ll
see how in a sec).

2

3

you are here 4 325

styling with fonts and colors

How to add a Web Font to your page…
So you’ve got a special font you want to add to your page? Let’s step through how to do that using
Web Fonts and the @font-face rule in CSS.

Step one: Find a font
If you don’t have a font, like Tony does, you’ll want to visit the many sites out there that have both
free and licensed fonts you can use in your pages (check out the appendix for more information).
We’re going to use Tony’s suggestion, Emblema One, which is a free font.

Step two: Make sure you have all the formats of the font you need
Here’s the good news on Web Fonts: the @font-face CSS rule is pretty much a standard across
modern browsers. Here’s the bad news: the actual format used to store the fonts isn’t quite yet a
standard (although we’re getting there), and in fact there are several different formats (at the time
of writing) supported across the browsers to varying degrees. Here are the common formats (and
their respective file extensions):

TrueType fonts: .ttf

OpenType fonts: .otf

Embedded OpenType fonts: .eot

SVG fonts: .svg

Web open font format: .woff

Step three: Place your font files on the Web
You’ll want to place your font files on the Web, so they are accessible to your user’s browsers. Or
you can use one of the many font services coming online that will host these files for you. In
either case, you’ll need the URL of your font files. Here are Tony’s files, which we’ve placed on
wickedlysmart.com:

http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-Regular.woff

http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-Regular.ttf

The best supported format across most modern browsers is web open font format, so that’s
the one we recommend you use. You can offer an alternative for older browsers; we’ll use
TrueType as that’s well supported across all browsers too (except IE).

TrueType and OpenType fonts are closely related;
OpenType is built on top of TrueType (and is
newer than TrueType).

Embedded OpenType (EOT) is a compact form of OpenType.
It’s proprietary (Microsoft), and supported only on IE.

Scalable Vector Graphics, or SVG, is a general-purpose graphics
format, and SVG fonts use this format to represent characters.

Web open font format is based on TrueType, and is being developed as a
standard for Web Fonts. It’s well supported on most modern browsers.

326 Chapter 8

adding a web font to the journal

Step 4: Add the @font-face property to your CSS
You’ve got the URLs for the .woff and .ttf versions of the font named “Emblema One,” so now
you’re ready to add a @font-face rule to your “journal.css” file. Add the rule to the top of the
file, above the body rule:

@font-face {

 font-family: "Emblema One";

 src: url("http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-Regular.woff"),

 url("http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-Regular.ttf");

}

Let’s start the rule
with @font-face.

In the @font-face rule, we create a name for our font using the font-family

property. You can use any name you want, but it is best usually to just match the

font name, like “Emblema One.”

The src property tells the browser where to get the font. We need
to specify a src value for every file the browser might recognize.
In our case, we’re going to supply both the .woff and .ttf types
recognized by today’s browsers.

Step five: Use the font-family name in your CSS

The @font-face rule tells the browser to load the font files at the src URLs. Browsers will
attempt to load each src file until it finds one that it can support. Once loaded, the font is
assigned the name you specify in the font-family property—in this case, “EmblemaOne.”
Now let’s take that font and see how we can use it in the style of the page.

Once you’ve loaded a font into the browser with the @font-face rule, you can use the font
by referencing the name you gave it with the font-family property. Let’s change the font
of the <h1> heading in Tony’s page to use the “Emblema One” font. To do that, we’ll add
a rule for <h1> like this::

h1 {

 font-family: "Emblema One", sans-serif;

}

We specify the name of the font just like
normal, only this time, it’s a font we’ve
loaded using @font-face! And just in case
something goes wrong, we specify sans-serif
as a fallback.

Step six: Load the page!

That’s it! You’re ready to test your font. Reload Tony’s journal page and check out the next
page to see what we got…

Unlike a normal rule that selects a set of elements and
assigns style, the @font-face rule sets up a font, which is
assigned to a font-family name for later use.

Hint: you already know
how to do this!

you are here 4 327

styling with fonts and colors

Test drive the Web Font in
Tony’s journal

Now, the <h1> heading at the
top of Tony’s journal page is
using font “Emblema One.”

When you reload “journal.html”, you should see the
<h1> heading at the top of the page use the Emblema
One. Not bad for just a few lines of CSS!

Q: The @font-face rule doesn’t really
look or act like a CSS rule, does it?

A: You’re right; think of @font-face as
a built-in CSS rule rather than a rule that
acts like a selector. Instead of selecting an
element, @font-face allows you to retrieve
a Web Font, and assign it to a font-family
name. The @ at the beginning is a good clue
this isn’t an ordinary CSS rule.

Q: Are there other built-in CSS rules I
should know about?

A: There are. Two common built-in rules
you’ll see are @import, which allows you to
import other CSS files (rather than a <link>
in your HTML), and @media, which allows
you to create CSS rules that are specific to
certain “media” types, like a printed page
versus a desktop screen versus a mobile
phone. More on @media later.

Q: Web fonts seem great; are there
any disadvantages to using them?

A: A few. First, it takes time to retrieve
Web Fonts, and so your page performance
might suffer the first time you have to
retrieve them. Also, there’s the pain of
managing the multiple font files. Finally, you
may find mobile and small devices that don’t
support them, so make sure you always
allow for alternatives in your design.

Q: Can I use multiple custom fonts
with @font-face?

A: Yes. If you’re using @font-face to load
the fonts, then for each font you want to use,
make sure the font files are available on your
server, and create a separate @font-face
rule for each one, so you can give each a
unique name.

However, remember to make sure you only
choose the fonts you really need in your web
page; each extra font takes extra loading
time for your page, so having multiple Web
Fonts in your page will slow down your web
page. If it gets too slow, you might have
frustrated users on your hands!

Q: You mentioned services to help
me with hosting Web Fonts. Can you say
more?

A: Sure! FontSquirrel (http://www.
fontsquirrel.com/) is a great place to find
open source, free fonts that you can upload
to your server. Their font kits make it easy to
offer multiple formats of a given font. Google
Web Font Service (http://www.google.com/
webfonts) is a way you can let Google do all
the hard work for managing the fonts and the
CSS for you; in this case, you just link to the
fonts you want on the Google service, and
then use the names in your CSS. Easy!

 TTF and WOFF
font formats
don't work in IE8
and earlier.

If you want to
support users with older IE browsers,

you’ll need to do a bit more work with

Web Fonts, and use an EOT font.

For even more on Web Fonts,
check out the appendix.

328 Chapter 8

how to specify font sizes

font-size: 14px;

You can specify your font size in pixels, just like the pixel dimensions you used
for images in Chapter 5. When you specify font size in pixels, you’re telling
the browser how many pixels tall the letters should be.

In CSS, you specify pixels with
a number followed by “px”.
This says that the font-size
should be 14 pixels high.

h i p

Setting a font to 14 pixels high
means that there will be 14
pixels between the lowest part of
the letters and the highest.

14 pixels

The px must come right after the number of
pixels. You can’t have a space in between.

Adjusting font sizes
Now that Tony has a new set of fonts, we need to work on those font sizes, as most
people find the default sizes of the headings a bit large, at least aesthetically. To do
that, you need to know how to specify font sizes, and there are actually a few ways
to do this. Let’s take a look at some ways to specify font-size, and then we’ll talk
about how best to specify font size so they are consistent and user friendly.

font-size: 150%;

Unlike pixels, which tell the font exactly how big it should be in pixels, a font size specified
as a percentage tells the font how big it should be relative to another font size. So,

says that the font size should be 150%
of another font size. But which other
font size? Well, since font-size is
a property that is inherited from the
parent element, when you specify a
percentage font size, it is relative to
the parent element. Let’s check out
how that works…

body {
 font-size: 14px;
}
h1 {
 font-size: 150%;
}

If you do things right, any
user will be able to increase
the font sizes on your web
page for readability. You’ll
see how in a couple of pages.

Here we’ve specified a body font size in
pixels, and a level-one heading as 150%.

body {
 font-size: 14px;
}

Here’s how you’d specify
font-size within a body rule.

px

%

you are here 4 329

styling with fonts and colors

body is 14px

p is 14px h2 is 17pxh1 is 21px

You can also specify font sizes using em, which, like percentage, is another
relative unit of measure. With em, you don’t specify a percentage; instead,
you specify a scaling factor. Here’s how you use em:

font-size: 1.2em;
This says that the
font size should be
scaled by 1.2.

The <h1> heading is
150% of the <body>
font size, which is 21px.

Since we didn’t specify a font
size for <p>, it inherits the
<body> font size of 14px.

body {
 font-size: 14px;
}
h1 {
 font-size: 150%;
}
h2 {
 font-size: 1.2em;
}

Say you use this measurement to specify the size of an
<h2> heading. Your <h2> headings will be 1.2 times the
font size of the parent element, which in this case is 1.2
times 14px, which is about 17px.

It’s actually 16.8, but
most browsers will
round it up to 17.

If we draw a little document tree, you can see that <h1>
inherits from <body>, so its font is going to be 150% of
the body’s font size.

Here’s the <h1> specified
by a percentage.

And here’s the <h2>
specified by 1.2em.

Don’t mix this
up with the
 element!

em

body is 14px

p is 14pxh1 is 21px

330 Chapter 8

using keywords for size

keywords There’s one more way to specify font sizes: keywords. You
can specify a font size as xx-small, x-small, small,
medium, large, x-large, or xx-large and the browser
will translate these keywords into pixel values using defaults
that are defined in the browser.

This is typically how the various keyword sizes relate to
one another. Each size is about 20% larger than the
previous size, and small is usually defined to be around
12 pixels in height. Keep in mind, however, that the
keywords aren’t always defined the same way in every
browser, and that users can redefine them if they want.

xx-small

x-small

small

medium

large

x-large

xx-large

body {
 font-size: small;
}

So, how should I specify my font sizes?
You’ve got quite a few choices for specifying font sizes: px, em, percentages, and
keywords. So, which do you use? Here’s a recipe for specifying font sizes that
will give you consistent results for most browsers.

In most browsers, this will result in the body text being about 12 pixels.

Nice recipe, but what’s good about it? By defining your fonts relative to the
body font size, it’s really easy to change the font sizes in your web page simply
by changing the body font size. Want to redesign the page to make the fonts
larger? If your body font size value is small, simply change it to medium, and
voilà—every other element will automatically get larger in proportion because
you specified their font sizes relative to the body’s font size. Better yet, say your
users want to resize the fonts on the page. Again, no problem; using this recipe,
all the fonts on the page will automatically readjust.

Choose a keyword (we recommend small or medium) and specify it as the
font size in your body rule. This acts as the default size for your page.

Specify the font sizes of your other elements relative to your body font size
using either em or percentages (the choice between em and percentages
is yours, as they are essentially two ways to do the same thing).

1

2

you are here 4 331

styling with fonts and colors

body is large

p is large h2 is 120% of bodyh1 is 150% of body

body { font-size: small; }
h1 { font-size: 150%; }
h2 { font-size: 120%; }

We’ve set <h2>’s
font size to 120%
of its parent’s size.

h2 is still 120% the size of
the body font size. In this
case, it’s 120% of “large.”

Now let’s say you decide to make your
font size bigger, OR the user makes the
font size bigger using the browser.

All your other elements
automatically get bigger too,
without you having to do a thing.

The font size of <h1>
is 150% the font size
of <body>.

That gives you a document tree that looks like this:

The <p> doesn’t have a font-size value set, so
by default, it inherits the <body> font size.

Now let’s say you want to increase the size of the fonts on the page,
or perhaps the user does. Then you get a tree that looks like this:

Let’s look at how this all works. First, you set a size for your
<body> element. Then, you set all the other font sizes relative to
that size, like this:

Now the body font size has changed to large, and everything else has
changed too, in relation to the body font size. That’s great, because
you didn’t have to go through and change all your other font sizes;
all you had to do was change the body font size. And if you’re a user,
everything happened behind the scenes. When you increased the text
size, all the text got bigger because all the elements are sized relative to
one another, so the page still looks good at a larger font size.

body is small

p is small h2 is 120% of bodyh1 is 150% of body

 Older versions of
Internet Explorer
do NOT support
text scaling
when you specify the font size using pixels.

Unfortunately, users of older
versions of Internet Explorer cannot resize fonts if your font sizes are
specified using pixels. So, that’s
one reason to stay away from pixel sizes. If you use pixels, you’ll be
reducing the accessibility of your
pages for some of your users,
although hopefully not for too
much longer as users continue to
upgrade their browsers.
Fortunately, if you follow the
recipe of supplying a keyword to
define your body’s font size, and
use relative sizes for your other
elements using em or %, then IE
will properly scale your fonts if the
browser is asked to make the text
bigger or smaller.

332 Chapter 8

setting up tony’s font sizes

Let’s make these changes to the
font sizes in Tony’s web page

@font-face {

 font-family: "Emblema One";

 src: url("http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-
Regular.woff"),

 url("http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-
Regular.ttf");

}

body {

 font-family: Verdana, Geneva, Arial, sans-serif;

 font-size: small;

}

h1 {

 font-family: "Emblema One", sans-serif;

 font-size: 220%;

}

h2 {

 font-size: 130%;

}

It’s time to try these font sizes in Tony’s web page. Add the new properties to the
“journal.css” file in the “chapter8/journal” folder. Once you’ve made the changes,
reload the page in the browser and check out the differences in the font size. If you
don’t see a difference, check your CSS carefully for errors.

And we’ll set the other fonts relative to the
body font size. In the case of <h1>, we’ll try a
font size that is 220% of the base font size.

Following our recipe, we’re using a font-size
of small for the <body> element. This will
act as the base font size.

We’ll make the <h2> font size smaller than <h1>, or 130% of the body font size.

Answer: <h1> would be 2.2em and <h2> 1.3em.

If you specified <h1> and <h2>’s font sizes using em rather than
percentage, what would their values be?

you are here 4 333

styling with fonts and colors

Test driving the font sizes

The body text is
a tad smaller. The
default body text
font size is usually
16px, although it
does depend on the
browser. But it’s
still easily readable
at the “small” size,
which is probably
about 12px.

The <h2> heading
is a bit smaller too,
and is a good size
compared to the
<h1> heading.

Here’s the evolving journal, complete with new
smaller fonts. Check out the differences…

Here’s the previous
version before the
change in font sizes.

Here’s the new version with updated
fonts. The design is starting to look
a little less clunky!

This <h1> heading looks
much better now. It's
bigger than the <h2>
headings but doesn’t
overwhelm the body text
and the page in size.

334 Chapter 8

more questions on font size

Q: So, by defining a font size in the
<body> element, I’m somehow defining a
default size for the page? How does that
work?

A: Yes, that’s right. By setting a font
size in your <body> element, you can then
define the other font sizes of your elements
in relation to their parent. What’s so great
about that? Well, if you need to change the
font size, then all you need to do is change
the body font size, and everything else will
change in proportion.

Q: Do we really need to worry about
users resizing their browser fonts? I
never do that.

A: Yes. Almost all browsers allow their
users to make the text of a page bigger or
smaller, and many users take advantage
of this feature. If you define your fonts in a
relative manner, then your users will have no
trouble doing this. Just be careful not to use
pixel sizes, because some browsers have
problems resizing those.

Q: I like the idea of using pixels
because then my page will look exactly
like I specify it.

A: There is some truth to that—by using
pixels for every element’s font size, you
are choosing the precise font size you want
for each element. But you do that at the
cost of giving some of your users (the ones
using older versions of Internet Explorer)
the flexibility to pick a font size that is
appropriate for their display and eyesight.
You also are creating pages that are a
little harder to maintain because if you
suddenly want to increase the font sizes of
all the elements in a page, you have a lot of
changes to make.

Q: What’s the difference between em
and %? They seem like the same thing.

A: They are basically two different ways
to achieve the same thing. Both give you a
way to specify a size relative to the parent
font size. A lot of people find percent easier
to think about than em, and also easier
to read in your CSS. But you should use
whichever you want.

Q: If I don’t specify any font sizes, do I
just get the default font sizes?

A: Yes, and what those sizes are
depends on your browser, and even the
version of the browser you are running. But
in most cases, the default body font size will
be 16 pixels.

Q: And what are the default sizes for
the headings?

A: Again, it depends on the browser, but
in general, <h1> is 200% of the default body
text font size, <h2> is 150%, <h3> is 120%,
<h4> is 100%, <h5> is 90%, and <h6> is
60%. Notice that by default <h4> is the same
font size as the body font size, and <h5> and
<h6> are smaller.

Q: So rather than using the size
keywords, can I use em or % in the body
rule? If I use 90% for the font size of the
body, what does that mean exactly? It’s
90% of what?

A: Yes, you can do that. If you specify
a font size of 90% in your body rule, then
that would be 90% of the default font size,
which we just said is usually 16 pixels, so
90% would be about 14 pixels. If you’d like a
font size slightly different than the keywords
provided, go ahead and use % or em.

Q: There seems to be so many
differences between browsers: font-
family, font-size, various default settings,
and so on. How will I ever know if my
design looks good on other browsers?

A: Great question. The easy answer
is that if you follow the guidelines in this
chapter, then most of your designs are going
to look just fine in other browsers. However,
you should know that they may look slightly
different in different browsers—the fonts may
be slightly bigger or smaller, spacing here
and there may be different, etc. But all the
differences should be very minor and should
not affect the readability of your pages.

However, if you really care about having
your pages looking almost identical in many
browsers, then you really need to test them
in lots of browsers. And to really take this
to the extreme, you’ll find a variety of CSS
“hacks” to try to make different browsers
behave the same. If you want to take it this
far, there’s nothing wrong with that, but just
keep in mind a lot of these activities take
time and have diminishing returns.

you are here 4 335

styling with fonts and colors

Starbuzz Coffee
Beverages

Starbuzz Coffee
Beverages

Changing a font’s weight
The font-weight property allows you to control how
bold the text looks. As you know, bold text looks darker
than normal text and tends to be a bit fatter too. You
can make any element use bold text by setting the
font-weight property to bold, like this:

font-weight: normal;

font-weight: bold;

font-weight: bold;

You can also go the other way. If you have an element
that is set to bold by default, or is inheriting bold from a
parent, then you can remove the bold style like this:

font-weight: normal;

Write the CSS to change the second-level headings in Tony’s page from their default
bold value to normal weight. Then, add the rule to your CSS and give it a test drive.
You’ll find the answer to this one on the next page.

There are also two relative font-weight properties:
bolder and lighter. These will make your text
style a little bolder or a little lighter relative to its
inherited value. These values are seldom used and
because not many fonts allow for slight differences in
the amount of boldness, in practice these two values
often have no effect.

You can also set your font-weight property to a
number between 100 and 900 (in multiples of 100),
but again, this is not well supported across fonts and
browsers and so is not often used.

336 Chapter 8

using normal weight

Test drive the normal-weight headings

@font-face {

 ...

}
body {
 font-family: Verdana, Geneva, Arial, sans-serif;
 font-size: small;
}
h1 {
 font-family: "Emblema One", sans-serif;
 font-size: 220%;
}
h2 {
 font-size: 130%;
 font-weight: normal;
}

Here’s what your CSS should look like after you make the change to
use a normal font-weight for the <h2> headings:

Here we’re changing the font-weight
of the <h2> headings to normal.

And here are the results. The <h2>
headings are now lighter looking.
You can still tell they are headings
because they are 130% the size of
the body text.

We're leaving out the full @font-face
definition to save some space.

you are here 4 337

styling with fonts and colors

Adding style to your fonts
You’re familiar with italic text, right? Italic text
is slanted, and sometimes has extra curly serifs.
For example, compare these two styles:

The italic text is slanted to the right
and has extra curls on the serifs.

You can add an italic style to your text in
CSS using the font-style property:

font-style: italic;

However, not all fonts support the italic style,
so what you get instead is called oblique text.
Oblique text is also slanted text, but rather
than using a specially designed slanted set of
characters in the font, the browser just applies
a slant to the normal letters. Compare these
non-oblique and oblique styles:

The regular letters are
slanted to the right in
the oblique style.

font-style: oblique;

You can use the font-style property
to get oblique text too, like this:

In practice, you’re going to find that, depending
on your choice of font and browser, sometimes
the two styles will look identical, and sometimes
they won’t. So, unless italic versus oblique is
very important to you, choose one and move
on. If it is important, you’ll need to test your
font and browser combination for the best
effect.

A common mistake is to
write “italic” as “italics”.
If you do, you won’t see
italic text. So remember
to check your spelling.

Italic and oblique
styles are two styles
that give fonts a
slanted appearance.

Unless you can control
the fonts and browsers
your visitors are
using, you’ll find that
sometimes you get italic,
and sometimes oblique,
no matter which style
you specify.

So just go with italic
and don’t worry about
the differences (you
probably can’t control
them anyway).

not italic

not oblique

italic

oblique

338 Chapter 8

using a font style

Styling Tony’s quotes
with a little italic
Now we’re going to use the font-style property
to add a little pizzazz to Tony’s quotes. Remember
the Burma Shave slogan in the <blockquote>
element? We’re going to change the slogan to italic
style to set it off from the rest of the text. To do
that, we just need to style the <blockquote> with a
font-style of italic, like this:

blockquote {
 font-style: italic;
}

Add this new CSS rule to the CSS in your
“journal.css” file, save it, and give the page a
test drive. You should see the Burma Shave
slogan change to italic; here’s our test drive.

Here’s the new style on the Burma Shave
slogan in Tony’s page. We got slanted text,
just like we wanted.

Q: The text for the <blockquote> is actually inside
a <p> that’s inside the <blockquote>. So, how did this
change the paragraph to italic?

A: Remember, by default most elements get their font
styles from their parents, and the parent of this paragraph
is the <blockquote> element. So the paragraph within the
<blockquote> inherits the italic style.

Q: Why didn’t we just put the text into an
element inside the <blockquote>? Wouldn’t that do the
same thing and make the <blockquote> italic?

A: Remember that is for specifying structure.
says that a set of words should be emphasized. What we’re
doing is styling a <blockquote>, we are not indicating that the
text in the <blockquote> should be emphasized. So, while
you’re right, on most browsers is styled with italic, it’s
not the right way to style the text in the <blockquote>. Also,
keep in mind that the style of could change, so you
shouldn’t count on always being italic.

you are here 4 339

styling with fonts and colors

You’d think we could just tell you there
was a color property and send you on
your way to use it. But unlike font sizes
or weights or text styles, you’ve got to
understand a fair bit about color to be able
to work with it and specify it in CSS.

So, over the next few pages, you’re going
to dive into color and learn everything
you need to know to use it on your pages:
how colors on the screen work, the various
ways of describing color in CSS, what
those mysterious hex codes are all about,
whether you should be worried about

“web-safe colors,” and what’s the easiest
way to find and specify colors.

Cool. Love the new look. Hey,
how about a little color in those
fonts? Say, ummm…the color of

my shirt? I love orange!

340 Chapter 8

overview of web colors

How do web colors work?

100% Red 100% Blue

60% Red 60% Blue

60% Green

You’re starting to see that there are lots of places you can add color to your
pages: background colors, border colors, and soon, font colors as well. But
how do colors on a computer actually work? Let’s take a look.

Web colors are specified in terms of how much
red, green, and blue make up the color. You
specify the amount of each color from 0 to
100% and then add them all together to arrive
at a final color. For instance if you add 100%
red, 100% green, and 100% blue together, you
get white. Notice that on a computer screen,
mixing together colors results in a lighter color.
After all, this is light we’re mixing!

But if you add, say, only 60% of each
component (red, green, and blue), then what
would you expect? Less white, right? In other
words, you get a gray color, because we’re
adding equal amounts of the three colors, but
not as much light to the screen.

Here’s red, green, and blue being
mixed together. If you look at the
center you’ll see how they all add up.

100% Green

you are here 4 341

styling with fonts and colors

80% Red 0% Blue

40% Green

On a computer screen, if 0% blue is added,
then blue doesn’t add anything to the color.

Mixing 80% red and
40% green, we get a
nice orange color.

Or, say you mix together 80% red and 40%
green. You’d expect an orange color, right?
Well, that’s exactly what you’ll get. Notice that
if a color is contributing zero, then it doesn’t
affect the other two colors. Again, this is
because there is no blue light being mixed with
red and green.

And what if you mix 0% of red, green, and
blue, then what do you get? That means you’re
sending no light of any kind to the screen, so
you get black.

0% Red 0% Blue

0% Green

342 Chapter 8

color names

Why do I need to know all
this “color theory”? Can’t I just
specify my colors by name? Like

“red,” “green,” or “blue”? That’s
what we’ve been doing so far.

While that may seem like a lot, that
palette gets old pretty quickly and really
limits the expressiveness of your pages.
We’re going to show you how to specify
colors in a way that will allow you to
name a lot more than 150 colors; in fact,
you’ll be able to work from a palette of
sixteen million colors.

Now, you’ve already seen a few examples
of colors in HTML, and yes, they do
look a little funky, like #fc1257. So, let’s
first figure out how to specify colors and
then you’ll see how you can easily use
color charts, online color pickers, or your
photo editing application to pick your
colors.

You certainly can use color
names all you like, but CSS
defines the names of only
about 150 colors.

you are here 4 343

styling with fonts and colors

How do I specify web colors?
Let me count the ways…
CSS gives you a few ways to specify colors. You can specify the
name of a color, specify a color in terms of its relative percentages
in red, green, and blue, or you can specify your color using a hex
code, which is shorthand for describing the red, green, and blue
components of the color.

While you might think that the Web would have decided on one
format by now, all these formats are commonly used, so it’s good
to know about them all. However, hex codes are by far the most
common way of specifying web colors. But remember that all
these ways of specifying color ultimately just tell the browser the
amount of red, green, and blue that goes into a color.

Let’s work through each method of specifying colors in CSS.

Specify color by name
The most straightforward way to describe a color in CSS is just to
use its name. There are 16 basic colors and 150 extended colors
that can be specified this way. Let’s say you want to specify the color

“silver” as the background color of a body element; here’s how you
write that in CSS:

body {

 background-color: silver;

}

Here’s the body rule. And the background-color
property.

And the color
written as a name.

So, to specify a color by name, just type the color name as the value
of the property. CSS color names are case-insensitive, so you can
type silver, Silver, or SILVER, and all will work. Here are the 16
basic colors in CSS. Remember, these are just names for predefined
amounts of red, green, and blue.

Yellow

Maroon

Teal

RedPurple

OliveNavy

Lime

Aqua

GreenGray

FuchsiaBlue

Black

White

Silver

Color in a book happens by light bouncing off the printed page.
On a computer, the light is emitted by the screen, so these
colors will look slightly different in your web pages.

You can count on these 16
colors in any browser, but
you might only find the
150 extended colors in
newer browsers.

344 Chapter 8

using rgb values

Specify color in red, green, and blue values

You can also specify a color as the amount of red, green, and blue. So,
say you wanted to specify the orange color we looked at a couple of
pages back, which consisted of 80% red, 40% green, and 0% blue.
Here’s how you do that:

body {
 background-color: rgb(80%, 40%, 0%);
}

Begin with “rgb”, short
for red, green, blue.

And then specify the percentages for
red, green, and blue within parentheses,
and with a % sign after each one.

You can also specify the red, green, and blue values as a numeric value
between 0 and 255. So, instead of 80% red, 40% green, and 0% blue,
you can use 204 red, 102 green, and 0 blue.

Here’s how you use straight numeric values to specify your color:

Where did these numbers come from?
 80% of 255 is 204,
 40% of 255 is 102, and
 0% of 255 is 0.

body {
 background-color: rgb(204, 102, 0);
}

We still start with “rgb”.
To specify numeric values and not
percentages, just type in the value
and don’t use a %.

Q: Why are there two different ways to specify rgb values?
Don’t percentages seem more straightforward?

A: Sometimes they are more straightforward, but there is some
sanity to using numbers between 0 and 255. This number is related
to the number of values that can be held in one byte of information.
So, for historical and technical reasons, 255 is often used as a unit
of measurement for specifying red, green, and blue values in a color.
In fact, you might have noticed that photo editing applications often
allow you to specify color values from 0 to 255 (if not, you’ll see how
to do that shortly).

Q: I never see anyone use rgb or actual color names in their
CSS. It seems everyone uses the #00fc9a type of color codes.

A: Using rgb percents or numeric values is becoming more
common, but you are right, “hex codes” are still the most widely used
because people consider them a convenient way to specify color.

Q: Is it important that I be able to look at something like
rgb(100, 50, 200) and know what color it is?

A: Not at all. The best way to know what rgb(100, 50, 200) looks
like is to load it in your browser or use an online color picker or photo
editing application to see it.

80% Red 0% Blue

40% Green

you are here 4 345

styling with fonts and colors

Specify color using hex codes

Now let’s tackle those funky-looking hex codes. Here’s the secret to them: each set of two
digits of a hex code just represents the red, green, and blue component of the color. So the
first two digits represent the red, the next two the green, and the last two represent the blue.
Like this:

#cc6600
red bluegreen

Always start a hex code
with the # sign.

Then specify the
red, green, and blue
components, using
two digits for each.

Wait a sec, how is “f”
or “c” a digit? Those

are letters!

Here’s the second secret to reading hex codes: each set of two
digits represents a number from 0 to 255. (Sound familiar?)
The problem is that if we used numbers, we’d only be able to
represent up to 99 in two digits, right? Well, not wanting to be
constrained by something as simple as the digits 0–9, computer
scientists decided they could represent all 256 values with the
help of some letters too (A–F). This is the hexadecimal system of
numbering, or “hex” for short.

Let’s take a quick look at how hex codes really work, and then
we’ll show you how to get them from color charts or your photo
editing application.

Believe it or not, they are digits, but they’re
written using a notation only a computer
scientist could love.

346 Chapter 8

understanding hex codes

CC 66 00

0066CC

1

2
3

4
5 6

7 8

9

A
B

C

D

E

10 11

F

12
13

14

150

The two-minute guide to hex codes
The first thing you need to know about hex codes is that they aren’t based on 10
digits (0 to 9); they’re based on 16 digits (0 to F). Here’s how hex digits work:

Using hex, you only need a single
digit to count all the way from
0 to 15. When you get above 9,
you start using letters.

So if you see a hex number like B, you know that just means 11. But what does BB,
or E1, or FF mean? Let’s disassemble a hex color and see what it actually represents.
In fact, here’s how you can do that for any hex color you might encounter.

#

Separate the hex color into its three components.
Remember that each hex color is made up of a red, green, and blue component.
The first thing you want to do is separate those.

Step one:

Take your hex color and
break it up into its red,
green, and blue components.

Red BlueGreen

you are here 4 347

styling with fonts and colors

CC

204 102 0

Convert each hex number into its decimal equivalent.
Now that you have the components separated, you can compute the value for
each from 0 to 255. Let’s start with the hex number for the red component:

Step two:

Take the rightmost
number and write down
its decimal value.

12Now take the leftmost
number and convert it to
its decimal value, and also
multiply it by 16. 12 * 16 = 192

Finally, add these two
numbers together. 192 + 12 = 204

Now do this for the other two values.
Repeat the same method on the other two values. Here’s what you should get:

Step three:

CC 66 00

That’s it. Now you’ve got the numbers for each component and you know
exactly how much red, green, and blue go into the color. You can disassemble
any hex color in exactly the same way. Now let’s see how you’ll usually
determine web colors.

There is no step four; you’re done!
Step four:

To calculate 66, you have
(6 * 16) + 6 = 102.

To calculate 00, you have
(0 * 16) + 0 = 0.

So 204 is the decimal
equivalent of CC in hex.

348 Chapter 8

using a photo editor for web colors

How to find web colors

Putting it all together
You’ve now got a few different ways to specify colors. Take our orange
color that is made up of 80% red, 40% green, and 0% blue. In CSS,
we could specify this color in any of these ways:

body {
 background-color: rgb(80%, 40%, 0%);
}

body {
 background-color: rgb(204, 102, 0);
}

body {
 background-color: #cc6600;
}

Specify by the percentage
of red, green, and blue.

Specify the amount of red, green,
and blue on the scale 0-255.

Specify using a hex code.

The two most common ways to find web colors are to use a color chart or an
application like Photoshop Elements. You’ll also find a number of web pages that
allow you to choose web colors and translate between rgb and hex codes. Let’s
check out Photoshop Elements (most photo editing applications offer the same
functionality).

Most photo editing
applications provide a color
picker that allows you to
visually choose your color
by using one or more color
spectrums.

Once you’ve picked
a color, the color
picker will show you
the color as both
rgb values and a
hex code.

Color pickers also
allow you to select
only “web-safe”
colors. We’ll talk
about this in a sec.

80% Red 0% Blue

40% Green

you are here 4 349

styling with fonts and colors

You’ll also find some useful color charts on the
Web. These charts typically display web colors
that are arranged according to a number of
different criteria with their corresponding hex
code. Using these colors is as easy as choosing
the colors you want in your page and copying
the hex codes into your CSS.

Using an online color chart

This chart is maintained by Wikipedia at
http://en.wikipedia.org/wiki/Web_colors.
You’ll also find many others by searching
for “HTML color charts.”

Try out the decorative
name to see if it works
across browsers. If it
doesn't, then use the hex
code instead.

Q: I heard that if I don’t use web-safe colors, my pages will
never look right on other browsers. Why haven’t we talked about
web-safe colors?

A: Back in the early days of web browsers, few people had
computer screens that supported a lot of colors, so the web-safe
palette of colors was created to ensure that pages looked consistent
on most displays.
Today the picture has changed drastically and most web users have
computer displays that support millions of colors. So, unless you have
a special set of users that you know have limited color displays, you
can pretty much count web-safe colors as a thing of the past.

Q: I know how to specify colors now, but how do I choose
font colors that work well together?

A: It would take an entire book to answer that question properly,
but there are some basic guidelines to selecting font colors. The
most important is to use colors with high contrast for the text and
the background to aid readability. For instance, black text on a white
background has the highest contrast. You don’t always have to stick
with black and white, but do try to use a dark hue for the text, and a
light hue for the background. Some colors, when used together, can
create strange visual effects (like blue and orange, or red and green),
so try your color combinations out on some friends before launching
them on the world.

Q: I’ve seen hex codes like #cb0; what does that mean?

A: You’re allowed to use shorthand if each two-digit pair shares
the same numbers. So, for instance, #ccbb00 can be abbreviated
#cb0, or #11eeaa as #1ea. However, if your hex code is something
like #ccbb10, then you can’t abbreviate it.

350 Chapter 8

put your hex skills to the test

Dr. Evel’s master plans have been locked away inside his personal safe and
you’ve just received a tip that he encodes the combination in hex code. In fact,
so he won’t forget the combination, he makes the hex code the background
color of his home page. Your job is to crack his hex code and discover the
combination to the safe. To do that, simply convert his web color into its red,
green, and blue decimal values, and you’ll have the right-left-right numbers of
his combination. Here’s the background web color from his home page:

Crack the Safe Challenge

body {

 background-color: #b817e0;

}

Crack the code, and then write the combination here:

right left right

you are here 4 351

styling with fonts and colors

@font-face {
 font-family: "Emblema One";
 src: url("http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-
Regular.woff"),
 url("http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-
Regular.ttf");
}
body {
 font-family: Verdana, Geneva, Arial, sans-serif;
 font-size: small;
}

h1, h2 {
 color: #cc6600;
 text-decoration: underline;
}

h1 {
 font-family: "Emblema One", sans-serif;
 font-size: 220%;
}

h2 {
 font-weight: normal;
 font-size: 130%;
}

blockquote {
 font-style: italic;
}

We’re going to make both <h1> and <h2> orange, so
we’re putting the color property in a shared rule.

Back to Tony’s page…we’re going to make the
headings orange, and add an underline too
Now that you know all about color, it’s time to add some color to Tony’s web page. He wanted
orange, and he’s going to get orange. But rather than making all his text orange—which would
probably be unattractive and hard to read against a white background—we’re going to add a subtle
splash of color in his headings. The orange is dark enough that there is good contrast between the
text and the background, and by color-coordinating with the orange in the photos (Tony’s shirt),
we’re creating a color relationship between the headings and the photos that should tie the images
and text together. And just to make sure the headings stand out and create separation between
the journal entries, we’ll also add an underline to each heading. You haven’t seen how to add an
underline yet, but let’s do it, and then we’ll look at more about text decorations.

Here are all the changes in the CSS. Make these changes in your “journal.css” file.

Here’s the hex code for the orange color Tony
wants, otherwise known as rgb(80%, 40%, 0%).

And here’s the way we create an
underline. We use the text-decoration
property and set it to underline.

Notice that we created one new rule for both
the <h1> and <h2> headings. This is a good
thing to do because it reduces duplication.

352 Chapter 8

testing heading colors

What do all these colors have in common? Try each one in a web page, say as a font
color, or use your photo editing application’s color picker to determine what colors
they are by entering the hex code into the dialog box directly.

#111111
#222222
#333333

#444444
#555555
#666666

#777777
#888888
#999999

#aaaaaa
#bbbbbb
#cccccc

#dddddd
#eeeeee

Test drive Tony’s orange headings

Now both <h1> and <h2> headings
are orange. This ties in nicely with
Tony’s orange theme and shirt.

Once you’ve made the changes to your “journal.
css” file to add the color property to the h1, h2 rule,
reload the web page and check out the results.

The headings are also set off further with underlines.
Hmmm…we thought this would be a good way to
distinguish the headings, but actually they seem to look
a little too much like clickable links, since people tend to
think anything underlined in a web page is clickable.

So, underlines may have been a bad choice.
Let’s quickly look at some other text
decorations, then we’ll reconsider these
underlines in the web page.

you are here 4 353

styling with fonts and colors

Everything you ever wanted to know about
text decorations in less than one page

em {
 text-decoration: line-through;
}

Text decorations allow you to add decorative effects to your text like underlines, overlines,
and linethroughs (also known as a strikethrough). To add a text decoration, just set the
text-decoration property on an element, like this:

You can set more than one decoration at a time. Say you want underline and overline at
the same time—you specify your text decoration like this:

em {
 text-decoration: underline overline;
}

And if you have text that is inheriting text decoration you don’t want, just use the value “none”:

em {
 text-decoration: none;
}

This rule will cause the
 element to have a
line through the middle
of the text.

This rule results in the
element having an underline
AND overline.

With this rule, elements
will have no decoration.

Q: So if I have two different rules for an , and one
specifies overline and the other underline, will they be added
together so I get both?

A: No. You need to combine the two values into one rule to get
both text decorations. Only one rule is chosen for the text-decoration,
and decorations in separate rules are not added together. Only the
rule that is chosen for the text-decoration styling will determine the
decoration used, so the only way to get two decorations is to specify
them both in the same text-decoration declaration.

Q: I’ve been meaning to ask why the color property isn’t
called text-color?

A: The color property really controls the foreground color of an
element, so it controls the text and the border color, although you can
give the border its own color with the border-color property.

Q: I like the linethrough decoration. Can I use it on text I’m
editing to indicate things that need to be deleted?

A: You could, but there’s a better way. HTML has an element
we haven’t talked about called that marks content in your
HTML as content that should be deleted. There is a similar element
called <ins> that marks content that should be inserted. Typically
browsers will style these elements with a strikethrough and underline,
respectively. And with CSS, you can style them any way you like. By
using and <ins>, you are marking the meaning of your content
in addition to styling it.

354 Chapter 8

using a border instead of an underline

Removing the underline…
Let’s get rid of that confusing underline and instead add
a nice bottom border like we did in the lounge. To do
that, open your “journal.css” file and make these changes
to the combined h1, h2 rule:

h1, h2 {
 color: #cc6600;
 border-bottom: thin dotted #888888;
 text-decoration: underline;
}

Now we’ve got borders under the <h1>
and <h2> element, not underlines.

Delete the text decoration.
And here’s how our new “underline” looks—
definitely more stylish and less confusing
than a text decoration underline.

Add a border on the bottom of the <h1> and
<h2> elements. You can almost read this like
English: “add a thin, dotted line with the
color #888888 on the bottom border”…

In the next chapter, we are going to go into
borders in detail. Hang on, we’re almost there!

Notice that borders extend all th
e way

to the end of the page, rather
than

just under the text. Why? You’ll find

out in the next chapter.

you are here 4 355

styling with fonts and colors

 � CSS gives you lots of control over the look of your
fonts, including properties like font-family, font-
weight, font-size, and font-style.

 � A font-family is a set of fonts that share common
characteristics.

 � The font families for the Web are serif, sans-serif,
monospace, cursive, and fantasy. Serif and sans-
serif fonts are most common.

 � The fonts that your visitors will see in your web
page depend on the fonts they have installed on
their own computers, unless you use Web Fonts.

 � It’s a good idea to specify font alternatives in your
font-family CSS property in case your users don’t
have your preferred font installed.

 � Always make the last font a generic font like serif
or sans-serif, so that the browser can make an
appropriate substitution if no other fonts are found.

 � To use a font that your users may not have
installed by default, use the @font-face rule in
CSS.

 � Font sizes are usually specified using px, em, %,
or keywords.

 � If you use pixels (“px”) to specify your font size,
you are telling the browser how many pixels tall to
make your letters.

 � em and % are relative font sizes, so specifying
your font size using em and % means the size of
the letters will be relative to the font size of the
parent element.

 � Using relative sizes for your fonts can make your
pages more maintainable.

 � Use the font size keywords to set the base font
size in your body rule, so that all browsers can
scale the font sizes if users want the text to be
bigger or smaller.

 � You can make your text bold using the font-weight
CSS property.

 � The font-style property is used to create italic or
oblique text. Italic and oblique text is slanted.

 � Web colors are created by mixing different
amounts of red, green, and blue.

 � If you mix 100% red, 100% green, and 100% blue,
you will get white.

 � If you mix 0% red, 0% green, and 0% blue, you will
get black.

 � CSS has 16 basic colors, including black, white,
red, blue, and green, and 150 extended colors.

 � You can specify which color you want using
percentages of red, green, and blue, using
numerical values of 0–255 for red, green, and blue,
or using a color’s hex code.

 � An easy way to find the hex code of a color you
want is to use a photo editing application’s color
picker or one of many online web tools.

 � Hex codes representing colors have six digits,
and each digit can be from 0–F. The first two digits
represent the amount of red, the second two the
amount of green, and the last two the amount of
blue.

 � You can use the text-decoration property to create
an underline for text. Underlined text is often
confused as linked text by users, so use this
property carefully.

356 Chapter 8

a crossword on fonts and color

HTMLcross
You’ve absorbed a lot in this chapter: fonts, color, weights, and styles. It’s
time to do another crossword and let it all sink in.

Across
1. Similar fonts are grouped into ____.
3. Use the ____ rule in CSS to load fonts from the Web.
4. When you specify fonts in the font-family property, you
are specifying ____.
6. Considered cleaner and easier to read on a computer
display.
8. You can specify fonts in terms of pixels, em, or ___.
12. Underline and linethrough are examples of text ___.
13. em and % are both this kind of size.

Down
1. Font family almost never used in web pages.
2. Browser that doesn’t handle pixel font sizes well.
5. Hex codes use this many different digits.
7. Fonts with little barbs on them.
9. Colors like #111111 through #EEEEEE are all shades
of ____.
10. Controls how bold a font looks.
11. Element that can be used to mark text for deletion.

1 2

3

4 5

6 7

8

9 10

11 12

13

Across
1. Similar fonts are group into ____.
3. Use the ____ rule in CSS to load

fonts from the web.
4. When you specify fonts in the

font-family property, you are
specifying ____.

6. Considered cleaner and easier to
read on a computer display.

8. You can specify fonts in terms of
pixels, em or ___.

12. Underline and line-through are
examples of text ___.

13. em and % are both this kind of
size.

Down
1. Font family almost never used in

web pages.
2. Browser that doesn't handle pixel

font sizes well.
5. Hex codes use this many different

digits.
7. Fonts with little barbs on them.
9. Colors like #111111 through

#EEEEEE, are all shades of ____.
10. Controls how bold a font looks.
11. Element that can be used to mark

text for deletion.

you are here 4 357

styling with fonts and colors

Font Magnets Solution
Your job was to help the fictional fonts below find their way
home to their own font family. You moved each fridge magnet
into the correct font family. Check your answers before you
move on. Here's the solution.

Bainbridge

Palomino

AngelIceland

Messenger

Savannah

Crush

Nautica

Quarter

Monospace family

Sans-serif family

Fantasy family

Cursive family

Serif family

358 Chapter 8

exercise solutions

Dr. Evel’s master plans have been locked away inside his personal safe and
you’ve just received a tip that he encodes the combination in hex code. In fact,
so he won’t forget the combination, he makes the hex code the background
color of his home page. Your job is to crack his hex code and discover the
combination to the safe. To do that, simply convert his web color into its red,
green, and blue decimal values, and you’ll have the right-left-right numbers of
his combination. Here’s the background web color from his home page:

Crack the Safe Challenge Solution

body {

 background-color: #b817e0;

}

Crack the code, and then write the combination here:

right left right

(11 * 16) + 8 =
184

(1 * 16) + 7 =
23

(14 * 16) + 0 =
224

you are here 4 359

styling with fonts and colors

What do all these colors have in common?
You can try each one in a web page, or use
the color picker to determine what colors
they are, by entering the hex code into the
dialog box directly.

All colors that use just one
digit in their hex codes
are grays, from very dark
(almost black) to very light
(almost white).

#111111
#222222
#333333
#444444
#555555
#666666
#777777
#888888
#999999
#aaaaaa
#bbbbbb
#cccccc
#dddddd
#eeeeee

HTMLcross Solution
F1 O N T F A M I2 L I E S
A N
N @3 F O N T F A C E
T E
A A4 L T E R N A T I V E S5

S N I
Y S6 A N S7 S E R I F X

E T T
P8 E R C E N T E

I X E
F P G9 W10 N

L R E
D11 D12 E C O R A T I O N
E R Y G

R13 E L A T I V E H
R T

Across
1. Similar fonts are group into ____.

[FONTFAMILIES]
3. Use the ____ rule in CSS to load

fonts from the web.
[@FONTFACE]

4. When you specify fonts in the
font-family property, you are
specifying ____. [ALTERNATIVES]

6. Considered cleaner and easier to
read on a computer display.
[SANSSERIF]

8. You can specify fonts in terms of
pixels, em or ___. [PERCENT]

Down
1. Font family almost never used in

web pages. [FANTASY]
2. Browser that doesn't handle pixel

font sizes well.
[INTERNETEXPLORER]

5. Hex codes use this many different
digits. [SIXTEEN]

7. Fonts with little barbs on them.
[SERIF]

9. Colors like #111111 through
#EEEEEE, are all shades of ____.
[GRAY]

10. Controls how bold a font looks.
[WEIGHT]

11. Element that can be used to mark
text for deletion. [DEL]

this is a new chapter 361

To do advanced web construction, you really need to know
your building materials. In this chapter we’re going to take a close look

at our building materials: the HTML elements. We’re going to put block and inline

elements right under the microscope and see what they’re made of. You’ll see how

you can control just about every aspect of how an element is constructed with CSS.

But we don’t stop there—you’ll also see how you can give elements unique identities.

And, if that weren’t enough, you’re going to learn when and why you might want to use

multiple stylesheets. So, turn the page and start getting intimate with elements.

I think we’d be a little
closer if it weren’t for all
the padding, margins, and

this darn table.

the box model9

Getting Intimate
with Elements

362 Chapter 9

what we’re going to do with the lounge

The lounge gets an upgrade
You’ve come a long way in eight chapters, and so
has the Head First Lounge. In fact, over the next
two chapters, we’re giving it a total upgrade with
all new content for the main page and restyling it
from scratch. And, just to entice you, we’re going
to give you a little sneak peek before we even
get started. Check this out—on this page, you’ll
find the new unstyled lounge page with all the
new content. On the next page, you’ll find the
stylized version that we’re going to create by the
end of the next chapter.

There’s a new graphic for
the header of the page.

The lounge guys have supplied a
lot of new text describing the
lounge and what it offers.

They’ve included a set of
elixir specials for the week.

And they even let visitors sample some of the
music that is played in the lounge each week, a
common request of customers.

Finally, they’ve got some legalese in the
footer of the page with a copyright.

you are here 4 363

the box model

Not too shabby. Now the lounge design
might be a tad on the, well, “ultra-stylish”
side for you, but hey, it is a lounge. And
we’re sure that you can see this design is
starting to look downright sophisticated—
just think what the same techniques could
do for your pages. Well, after this chapter
and the next, designs like this are going to be
easily within your reach.

The new and improved,
ultra-stylish lounge

We’ve got headings that match the site’s
color theme, an aquamarine. The fonts
are also a very readable sans-serif.

This paragraph has been highly stylized,
which helps set it off from the text and
gives the page an attractive look. It also
looks like the font is a serif font, which is
different from the main text.

The music CDs and artists
are styled now too.

And the footer is
centered and displayed
in a small font.

The elixirs have been
dramatically restyled into an
appetizing display of drinks.

The elixirs have also been moved over to
the side. How did that happen?

364 Chapter 9

starting with simple styles

Starting with a few simple upgrades
Now you’re all ready to start styling the lounge. Let’s add a few
rules to your CSS just to get some basics out of the way—like the
font family, size, and some color—that will immediately improve
the lounge (and give you a good review from the last chapter). So,
open your “lounge.css” file and add the following rules.

Setting up the new lounge

Take a look at the “chapter9/lounge” folder and you’ll find the file “lounge.html”,
with all new content. Open the file in your editor and have a look around. Everything
should look familiar: head, paragraphs, a few images, and a list.

1

You’re going to spend most of this chapter adding style to this HTML, so you need a
place for your CSS. You’re going to create all new styles for the lounge in the stylesheet
file “lounge.css”, so you’ll find your <link> element in the <head> of “lounge.html” is
still there, but the previous version of “lounge.css” stylesheet is gone.

2

Next, you need to create the new “lounge.css” in the “chapter9/lounge” folder. This file is
going to hold all the new CSS for the new lounge.

3

Before we start the major construction, let’s get familiar with the new lounge.
Here’s what you need to do:

Remember, this <link> element tells the browser to look for an external stylesheet called
“lounge.css”.

body {
 font-size: small;
 font-family: Verdana, Helvetica, Arial, sans-serif;
}

h1, h2 {
 color: #007e7e;
}

h1 {
 font-size: 150%;
}

h2 {
 font-size: 130%;
}

Here’s the default font
size for the page.

We’re going to go with a sans-serif font
family for the lounge. We’ve picked a few
font alternatives, and ended the declaration
with the generic sans-serif font.

Now let’s get some reasonable heading sizes for <h1> and <h2>.
Since we’re setting two different sizes for these, we need separate
rules and can’t add them to the combined rule for <h1> and <h2>.

We’re going to set the color of the <h1> and <h2>
elements to an aquamarine to match the glass in the logo.

 <link type="text/css" rel="stylesheet" href="lounge.css">

you are here 4 365

the box model

A very quick test drive
Let’s do a quick test drive just to see how these
styles affect the page. Make sure you’ve made all the
changes; then save and test.

Headings are now sans-serif
and a color that matches
the logo, creating a theme
for the page.

Paragraph text is also sans-serif
since every element inherits the
<body>’s font-family property.

The <h2> heading is also
styled with a new color and
sans-serif, but a tad smaller.

This link looks oddly out of place
with its default blue color. We’ll
have to fix that (later).

We haven’t applied any styles
to the <h3>, so it just inherits
the font-family property
from <body>.

One more adjustment
We’re going to make one more adjustment to the
lounge before we move on to start making some bigger
changes. This adjustment involves a new property you
haven’t seen before, but at this point, you’ve got enough
experience under your belt that we’re not going to treat
you with kid gloves every time a new property comes
along. So, just jump in and give it a try.

Here’s what we’re going to do: we’re going to adjust the
line height of the text on the entire page so that there’s
more vertical space between each line. To do that, we
add a line-height property in the body rule:

body {

 font-size: small;

 font-family: Verdana, Helvetica, Arial, sans-serif;

 line-height: 1.6em;

}

Here we’re changing the space between each line to 1.6em—
in other words, 1.6 times the font size.

Increasing the line height of your text
can improve readability. It also gives
you another way to provide contrast
between different parts of your page
(you’ll see how that works in a bit).

366 Chapter 9

learning about line height

Checking out the new line height
As you might have guessed, the line-height property allows you to specify the
amount of vertical space between each line of your text. Like other font-related
properties, you can specify the line height in pixels, or using an em or percent
value that’s relative to the font size.

Let’s see what the effect of the line-height property is on the lounge. Make
sure you add the line-height property to your CSS file and then save. You
should see the line height increase when you refresh.

Using the line-height property, we’ve
increased the space between each line of
text from the default to 1.6em. Before

AfterThe space between lines

is known as “leading”
(pronounced “ledding")

in

the publishing industry.

The line-height property is inherited, so by
setting it in the body, all the elements on the
page now have a line height of 1.6em.

Try a few different values for line-height, like 200%, .5em, and 20px to see the
effect. Which looks the best? The worst? Which is most readable? When you’re
done, make sure you change the line-height back to 1.6em.

you are here 4 367

the box model

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Getting ready for some major
renovations
After only a few pages of this chapter, you already have a ton of
text style on the new lounge. Congrats!

Now things are going to get really interesting. We’re going to
move from changing simple properties of elements, like size,
color, and decorations, to really tweaking some fundamental
aspects of how elements are displayed. This is where you move
up to the big leagues.

But to move up to the big leagues, you’ve got to know the box
model. What’s that? It’s how CSS sees elements. CSS treats every
single element as if it were represented by a box. Let’s see what
that means.

Every box is made up of a
content area along with optional
padding, border, and margins.From the perspective of CSS, every

element is a box.

All elements are treated as boxes:
paragraphs, headings, block quotes,
lists, list items, and so on. Even inline
elements like and links are
treated by CSS as boxes.

The content area holds the
content (text or an image, for
instance).

The content area is surrounded
by optional transparent padding.

An optional border can be
placed around the padding.

And finally, an optional transparent margin surrounds everything.

368 Chapter 9

the box model up close

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

A closer look at the box model

What is the
content area?
Every element starts with some
content, like text or an image,
and this content is placed inside
a box that is just big enough
to contain it. Notice that the
content area has no whitespace
between the content and the
edge of this box.

The content area holds the element’s
content. It’s typically just big enough
to hold the content.

Any box can have a layer of padding
around the content area. Padding is
optional, so you don’t have to have it,
but you can use padding to create visual
whitespace between the content and
the border of the box. The padding
is transparent and has no color or
decoration of its own.

We’ve drawn an edge
around the content
area just so you know
how big it is. But in a
browser, there is never
a visible edge around
the content area.

You’re going to be able to control every aspect of the box with
CSS: the size of the padding around the content, whether or not
the element has a border (as well as what kind and how large),
and how much margin there is between your element and other
elements. Let’s check out each part of the box and its role:

The browser adds optional padding around
the content area.

What is the padding?

Using CSS, you’re going to be able to control the width of
the padding around the entire content area, or even control
the padding on any one side (top, right, bottom, or left).

you are here 4 369

the box model

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Elements can have an optional
border around them. The border
surrounds the padding and,
because it takes the form of a
line around your content, provides
visual separation between your
content and other elements on the
same page. Borders can be various
widths, colors, and styles.

The margin is also optional and
surrounds the border. The
margin gives you a way to add
space between your element
and other elements on the same
page. If two boxes are next to
each other, the margins act as
the space in between them. Like
padding, margins are transparent
and have no color or decoration
of their own.

This is the entire element. We have a
content area, surrounded by optional
padding, surrounded by an optional border,
surrounded by an optional margin. Border

Padding
Content

Margin

What is the border?

Border

Padding

Content

Using CSS, you’re going to be able to control
the width, color, and style of the border.

Notice that the padding
separates the content area
from the border.

What is the margin?

Using CSS, you’re going to be able to control
the width of the entire margin, or of any
particular side (top, right, bottom, or left).

370 Chapter 9

how boxes can be configured

What you can do to boxes
The box model may look simple with just the content, some padding, a
border, and margins. But when you combine these all together, there
are endless ways you can determine the layout of an element with its
internal spacing (padding) and the spacing around it (margins). Take a
look at just a few examples of how you can vary your elements.

You can style a box to
have padding, a border,
and a margin.

Or just
padding and
a border

Or just a
border

Or a margin with
no border and no
padding

Boxes
Borders

You can have solid
borders, thick or thin.

Or no border at all

Or choose from
eight different
styles of borders,
like dashed

Or color your
borders

Or even create
rounded corners
on your borders

you are here 4 371

the box model

Our guarantee: at the lounge, we’re committed to providing
you, our guest, with an exceptional experience every time
you visit. Whether you’re just stopping by to check in on
email over an elixir, or are here for an out-of-the-ordinary
dinner, you’ll find our knowledgeable service staff pay
attention to every detail. If you’re not fully satisfied have a
Blueberry Bliss Elixir on us.

Padding Margins

Content Area

And here the
content is
offset to the
bottom right
with padding on
the top and left.

You have the same
level of control over
the margins. Here
there’s a lot of top
and bottom margin.

And here’s a lot of
left and right margin.

And as with padding,
you can specify all
sides independently
to create margins
like this.

You can even control
width and height in a
variety of ways. Here,
the content area has
been made wide.

And
here the
content
area is tall
but thin.

With CSS, you can
control padding on any
side of the content
area. Here we’ve got a
lot of left and right
padding.

And here there’s a lot of
top and bottom padding.

Our guarantee:
at the lounge,
we’re committed
to providing you,
our guest, with
an exceptional
experience every
time you visit.
Whether you’re
just stopping by to
check in on email
over an elixir, or
are here for an
out-of-the-ordinary
dinner, you’ll find
our knowledgeable
service staff pay
attention to every
detail. If you’re not
fully satisfied have
a Blueberry Bliss
Elixir on us.

372 Chapter 9

some details about boxes

Q: It seems like knowing this box
stuff would be important if I were
someone creating the software for a
web browser, but how is this going to
help me make better web pages?

A: To go beyond simple web pages
that use the browser’s default layout,
you need to be able to control how
elements sit on the page, as well as the
relative position of other elements. To do
that, you alter various aspects of each
element’s padding and margins. So to
create interesting web page designs,
you definitely need to know something
about the box model.

Q: What’s the difference between
padding and margin? They seem like
the same thing.

A: The margin provides space
between your element and other
elements, while padding gives you extra
space around your content. If you have
a visual border, the padding is on the
inside of the border and the margin on
the outside. Think of padding as part of
the element, while the margin surrounds
your element and buffers it from the
things around it.

Q: I know they are all optional, but
do you need to have padding to have
a border or a margin?

A: No, they are all totally optional
and don’t rely on each other. So you
can have a border and no padding, or a
margin and no border, and so on.

Q: I’m not sure I get how elements
get laid out and how margins fit into
that.

A: Hold that thought. While you’re
going to see a little of how margins
interact with other elements in this
chapter, we’ll get way into this topic
in Chapter 11 when we talk about
positioning.

Q: So other than size, it sounds
like I can’t really style padding and
margins?

A: That’s basically right. Both are
used to provide more visual space, and
you can’t give the padding or margin a
direct color or any kind of decoration.
But because they are transparent, they
will take on the color of any background
colors or background images. One
difference between padding and margins
is that the element’s background color
(or background image) will extend under
the padding, but not the margin. You’ll
see how this works in a bit.

Q: Is the size of the content area
determined solely by the size of the
content in it?

A: Browsers use several rules to
determine the width and height of the
content area, and we’ll be looking at that
more in-depth later. The short answer is
that while the content is the primary way
the size of an element is determined,
you can set the width and height
yourself if you need control over the size
of the element.

Hey guys, love the shop talk,
really do. But did you forget

you were in the middle of
renovating the lounge?

you are here 4 373

the box model

Meanwhile, back at the lounge…
We do have our work cut out for us on the lounge page, so let’s get back to it. Did you notice
the blue, stylized paragraph when you looked at the final version of the lounge page in the
beginning of the chapter? This paragraph contains text with the lounge’s guarantee to their
customers, and obviously they want to really highlight their promise. Let’s take a closer look
at this paragraph, and then we’ll build it.

The paragraph has a
aquamarine background. The text looks serif,

not sans-serif, and
it’s italic.

Notice the
paragraph looks
indented a bit.

There’s a stylish,
ragged-looking border.

The text is offset
from the border.

There’s even a
graphic in the
paragraph.

There’s even a
graphic in the
paragraph.

374 Chapter 9

working through padding, borders, and margins

Before going on to the next page, think about how you might
use padding, borders, and margins to transform an ordinary
paragraph into the “guarantee paragraph.”

See if you can identify the padding, border, and margins of this paragraph.
Mark all the padding and margins (left, right, top, and bottom):

you are here 4 375

the box model

<p class="guarantee">

 Our guarantee: at the lounge, we're committed to providing

 you, our guest, with an exceptional experience every time you

 visit. Whether you're just stopping by to check in on email

 over an elixir, or are here for an out-of-the-ordinary dinner,

 you'll find our knowledgeable service staff pay attention to every

 detail. If you're not fully satisfied, have a Blueberry Bliss

 Elixir on us.

</p>

Open your “lounge.html” file and locate the paragraph that starts
“Our guarantee”. Add a class attribute “guarantee” to the element like this:

1

Add the class attribute with a value of “guarantee”.
Remember, a class will allow you to style this paragraph
independently of the other paragraphs.

Save your “lounge.html” file and open the “lounge.css” file. You’re going
to add a border and background color to the guarantee paragraph. Add
the following CSS to the bottom of your stylesheet and then save.

2

.guarantee {

 border-color: black;

 border-width: 1px;

 border-style: solid;

 background-color: #a7cece;

}

The first three properties add a border to any
element that is in the guarantee class. So far,
that’s just this paragraph.

We’re making the color of the border black…
…and one pixel thick…
…and solid.

We’re also giving the element a background color, which
will help you see the difference between padding and
margins, and make the guarantee look good.

Creating the guarantee style
Let’s get started by making a few small changes to the style of the guarantee
paragraph just to get a feel for how the paragraph’s box is set up. To do that,
you’re going to add the paragraph to a class called guarantee so that you can
create some custom styles for just this paragraph. You’re then going to add a
border along with a little background color, which will let you see exactly how
the paragraph is a box. Then we’ll get to work on the rest of the style. Here’s
what you need to do:

376 Chapter 9

a first cut on paragraph styling

A test drive of the paragraph border
Reload the page in your browser, and you’ll now see the guarantee
paragraph with an aquamarine background and a thin black border
around it. Let’s examine this a little more closely…

It doesn’t look like the paragraph has any
padding around the content—there is no
space between the text and the border.

There isn’t a noticeable margin between
the left and right edges of the
paragraph and the browser window edges.

But there does seem to be a margin on the top
and bottom of the paragraph element.

Here’s what the paragraph would look like if we drew it
as a box model diagram:

We’ve got a top and bottom margin.

But the left and right
margins are very small.

And we have a border, but it’s right up against the content, which
means the padding is set very small, or there’s no padding at all.

Our guarantee: at the lounge, we’re committed to providing you, our guest, with
an exceptional experience every time you visit. Whether you’re just stopping by to
check in on email over an elixir, or are here for an out-of-the-ordinary dinner, you’ll
find our knowledgeable service staff pay attention to every detail. If you’re not fully
satisfied have a Blueberry Bliss Elixir on us.

you are here 4 377

the box model

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Padding, border, and margins for the guarantee
Now that you’ve seen how the padding, border, and margins are
currently set on the guarantee paragraph, let’s think more about
how we’d actually like them to look.

And we want some more margin
space around the paragraph.

We definitely need some padding
all around the content.

We’re also going to need a
slightly different border.
This border looks ragged,
not like a solid line.

Adding some padding
Let’s start with the padding. CSS has a padding property that you can
use to set the same padding for all four sides of the content. You can
set this property either to a number of pixels or a percentage. We’ll use
pixels and set the padding to 25 pixels.

 .guarantee {

 border-color: black;

 border-width: 1px;

 border-style: solid;

 background-color: #a7cece;

 padding: 25px;

 }

We’re adding 25 pixels of padding
to all sides of the content (top,
right, bottom, and left).

378 Chapter 9

testing the padding

 .guarantee {

 border-color: black;

 border-width: 1px;

 border-style: solid;

 background-color: #a7cece;

 padding: 25px;

 margin: 30px;

 }

Now you can see 25 pixels of space between the
edge of the text content and the border.

Notice that the background
color is under both the content
and the padding. But it doesn’t
extend into the margin.

Now let’s add some margin
Margins are easy to add using CSS. Like padding, you can
specify the margin as a percentage or in pixels. You’re going to
add a 30-pixel margin around the entire guarantee paragraph.
Here’s how you do that:

We’re adding 30 pixels of margin to all sides of the
content (top, right, bottom, and left).

A test drive with some padding
When you reload the page in your browser, you’ll notice the text
in the guarantee paragraph has a little more breathing room
on the sides now. There’s some space between the text and the
border, and it’s much easier to read.

you are here 4 379

the box model

Now we have 30 pixels of margin on all sides.

A test drive with the margin
When you reload the lounge page, you’ll see the paragraph is really beginning to
stand out on the page. With the margins in place, the paragraph looks inset from
the rest of the text, and that, combined with the background color, makes it look
more like a “callout” than an ordinary paragraph. As you can see, with only a few
lines of CSS, you’re doing some powerful things.

If you look at the guarantee paragraph as it’s supposed to look in its final form,
it has an italic, serif font, a line height greater than the rest of the page, and (if
you’re looking really close) gray text. Write the CSS below to set the line height
to 1.9em, the font style to italic, the color to #444444, and the font family to
Georgia, “Times New Roman”, Times, serif. Check your CSS with the answers
in the back of the chapter, then type it in and test.

380 Chapter 9

background images

Adding a background image
You’re almost there. What’s left? We still need to get the white “guarantee star”
graphic into the paragraph and work on the border, which is a solid, black line.
Let’s tackle the image first.

If you look in the “chapter9/lounge/images” folder, you’ll find a GIF image called
“background.gif ” that looks like this:

 .guarantee {

 line-height: 1.9em;

 font-style: italic;

 font-family: Georgia, "Times New Roman", Times, serif;

 color: #444444;

 border-color: black;

 border-width: 1px;

 border-style: solid;

 background-color: #a7cece;

 padding: 25px;

 margin: 30px;

 background-image: url(images/background.gif);

 }

Now you just need to get that image into your paragraph element, so you’ll
be using an element, right? Not so fast. If you’re adding an image to
the background of an element, there is another way. Using CSS, you can add
a background image to any element using the background-image property.
Let’s give it a try and see how it works:

This image is a simple star-like
pattern in white against a
transparent background. Notice
that it also has a matte around
it that matches the color of
the background.

Add this to your CSS, save, and reload your page.

Here are the properties you added
in the exercise on the previous page.

you are here 4 381

the box model

Wait a sec, it seems
like we have two ways

to put images on a page. Is
background-image a replacement

for the element?

No, the background-image property has
a very specific purpose, which is to set the
background image of an element. It isn’t
for placing images in a page—for that, you
definitely want to use the element.

Think about it this way: a background image
is pure presentation, and the only reason you
would use a background-image property is
to improve the attractiveness of your element.
An element, on the other hand, is used
to include an image that has a more substantial
role in the page, like a photo or a logo.

Now, we could have just placed the image
inside the paragraph, and we could probably
get the same look and feel, but the guarantee
star is pure decoration—it has no real meaning
on the page, and it’s only meant to make the
element look better. So, background-image
makes more sense.

382 Chapter 9

more about the background-image property

CSS Up Close

Test driving the background image
Well, this is certainly an interesting test drive—we have
a background image, but it appears to be repeated
many times. Let’s take a closer look at how to use CSS
background images, and then you’ll be able to fix this.

Here’s the guarantee star image in the background.
Notice that it sits on top of the background color,
and because it has a transparent background, it
lets the color show through.

Also notice that background images, like the background
color, only show under the content area and padding,
and not outside the border in the margin.

background-image: url(images/background.gif);

The background-image property is set
to a URL, which can be a relative path
or a full-blown URL (http://…).

Notice that no quotes are
required around the URL.

The background-image property places an image in the background
of an element. Two other properties also affect the background image:
background-position and background-repeat.

you are here 4 383

the box model

The background-position property sets the position of the image and can be specified in pixels,
or as a percentage, or by using keywords like top, left, right, bottom, and center.

background-position: top left;

Places the image in the top left of the element.

There are many different ways to position things in CSS, and
we’ll be talking more about that in two chapters.

By default, a background image is “tiled,” or repeated over and over to fill the background space.
The background-repeat property controls how this tiling behaves.

background-repeat: repeat;

Here are the other background-repeat values you can use.

Sets the image to repeat both
horizontally and vertically. This is the
default behavior.

no-repeat
repeat-x
repeat-y
inherit

Display the image once; don’t
repeat the image at all.
Repeat the image only horizontally.
Repeat the image only vertically.

Just do whatever the parent element does.

 .guarantee {

 line-height: 1.9em;

 font-style: italic;

 font-family: Georgia, "Times New Roman", Times, serif;

 color: #444444;

 border-color: black;

 border-width: 1px;

 border-style: solid;

 background-color: #a7cece;

 padding: 25px;

 margin: 30px;

 background-image: url(images/background.gif);

 background-repeat: no-repeat;

 background-position: top left;

 }

By default, background images are repeated. Luckily, there is a no-repeat value
for the background-repeat property. Also, by default, browsers position a
background image in the top left of the element, which is where we want it, but
let’s also add a background-position property just to give it a try.

You’ve got two new
properties to add.

Fixing the background image

We want the
background image
to not repeat.

And we want it in
the top-left corner.

384 Chapter 9

getting more sophisticated with padding

Another test drive of the background image
Here we go again. This time, it looks like we’re much
closer to what we want. But since this is a background
image, the text can sit on top of it. How do we fix
this? That’s exactly what padding is for! Padding
allows you to add visual space around the content
area. Let’s increase the padding on the left and see if
we can nail this down once and for all.

This is much better. Now
the image isn’t repeated.

But we’d really like for
the text not to run over
the top of the image.

How do you add padding only on the left?
For padding, margins, and even borders, CSS has a property for every
direction: top, right, bottom, and left. To add padding on the left side,
use the padding-left property, like this:

 .guarantee {
 line-height: 1.9em;
 font-style: italic;
 font-family: Georgia, "Times New Roman", Times, serif;
 color: #444444;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
 padding-left: 80px;
 margin: 30px;
 background-image: url(images/background.gif);
 background-repeat: no-repeat;
 background-position: top left;
 }

We’re using the padding-left property to
increase the padding on the left..

Notice that we first set the padding on all sides to 25 pixels, and then we specify a property for the left side.

Order matters here—if you switch the order, then you’ll
set the padding for the left side first, and then the
general padding property will set all sides back to 25
pixels, including the left side!

you are here 4 385

the box model

Are we there yet?
Make sure you save your changes and reload the
page. You should see more padding on the left side
of the paragraph, and the text is now positioned
well with respect to the guarantee star. This is a
great example of where you use padding instead
of margins. If you need more visual space around
the content area itself, use padding, as opposed to if
you want space between elements or the sides of the
page, in which case, use margin. In fact, we could
actually use a little more margin on the right side to
set the paragraph off even more. Let’s do that, and
then all we need to do is fix the border.

The padding looks great. Now the text is well positioned with respect to the graphic.

We could increase the
margin on the right
now to give this a little
more of a “callout” look
on the page.And we still need

a better border.

How do you increase the margin just on the right?
You do this just like you did with the padding: add another property,
margin-right, to increase the right margin.

 .guarantee {
 line-height: 1.9em;
 font-style: italic;
 font-family: Georgia, "Times New Roman", Times, serif;
 color: #444444;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
 padding-left: 80px;
 margin: 30px;
 margin-right: 250px;
 background-image: url(images/background.gif);
 background-repeat: no-repeat;
 background-position: top left;
 }

Remember, we’re already setting
the margins to be 30 pixels.

See the pattern? There’s a property
to control all sides together, and
properties for each side if you want
to set them individually.

And now we’re going to override that setting for the right
side, and set it to 250 pixels.

Add the new margin-right property and reload. Now the
paragraph should have 250 pixels of margin on the right side.

250 pixels

386 Chapter 9

overview of borders

Border Style

A two-minute guide to borders
There’s only one thing left to do to perfect the guarantee paragraph:
add a better border. Before you do, take a look at all the different ways
you can control the border of an element.

The solid style is
just what it sounds
like: a solid border.

The double style
uses two lines.

A groove style
looks like a groove
in the page
(difficult to see
in a book).

The outset style looks
like an outset that
rises from the page.

09/30/2005 10:48 PMborders.html

The dotted
style looks like
a series of dots.

And the dashed
style is just a
set of dashes
around the
border.

The inset style
looks like an inset
that sinks into
the page.

The ridge style
looks like a raised
ridge on the page.

09/30/2005 10:48 PMborders.html

09/30/2005 10:48 PMborders.html

Go with me; I’ve
been better since
the outset.

Once you go
dotted, you’ll
never go back.

Ignore dotted;
use dashed.

I’m the only
“in” style:
inset.

I’m more fun;
I’ve got ridges.

The border-style property controls the visual style of the border. There are eight
border styles available, from a solid line to dotted lines to ridges and grooves.

border-style: groove;
To specify a border style, just use the
border-style property and a value of one
of the available styles.

09/30/2005 10:48 PMborders.html

I’m the border
that’s got the
groove.

Go with solid,
the original.

Go with
double; I’m
twice the fun.

you are here 4 387

the box model

Border ColorBorder Width

thin
medium
thick

1px
2px
3px
4px
5px
6px

border-top-color
border-top-style
border-top-width

border-right-color
border-right-style
border-right-width

border-bottom-color
border-bottom-style
border-bottom-width

border-left-color
border-left-style
border-left-width

The border-width property controls
the width of the border. You can use
keywords or pixels to specify the width.

The border-color property sets the color
of the border. This works just like setting
font colors; you can use color names, rgb
values, or hex codes to specify color.

Specifying Border Sides
Just as with margins and padding,
you can specify border style, width,
or color on any side (top, right,
bottom, or left):

border-top-color: black;

border-top-style: dashed;

border-top-width: thick;

These properties are for the top border
only. You can specify each side of the
border independently.

border-color: red;
border-color: rgb(100%, 0%, 0%);
border-color: #ff0000;

Use border-color
to specify the color
of a border. You
can use any of the
common ways to
specify color.

border-width: thin;
border-width: 5px;

You can specify widths using the keywords thin,
medium, or thick, or by the number of pixels.

388 Chapter 9

border corners

Specifying Border Corners
You can create rounded corners on all four corners,
or just one corner, or any combination.

border-radius: 15px;

border-top-left-radius: 3em;
border-top-right-radius: 3em;
border-bottom-right-radius: 3em;
border-bottom-left-radius: 3em;

border-top-left-radius: 15px;
border-top-right-radius: 0px;
border-bottom-right-radius: 0px;
border-bottom-left-radius: 15px;

You can specify all four corners with one number.

Or you can specify each corner
separately. Notice that you can use
px or em to specify the radius size.

You can get all kinds of interesting
shapes using border-radius.

If you use em, the measurement of
the border radius is relative to the
font size of the element, just like
when you use em for font-size.

you are here 4 389

the box model

Border fit and finish
It’s time to finish off the guarantee paragraph. All we need to do is give
it a ragged-looking border. But which style is that? The available styles
are solid, double, dotted, dashed, groove, ridge, inset, and outset. So how
do we make it look ragged? It’s actually just a trick: we’re using a dashed
border that has its color set to white (matching the background color of the
page). Here’s how you do it. Begin by just making the border dashed. Find
the border-style property in your “lounge.css” and change it, like this:

border-style: dashed; Here we’ve changed
the border from solid
to dashed.

Go ahead and save the file and reload. You should see a border like this:

Now, to get a ragged-looking border, just set the color of the border
to white. This makes the border look like it is cutting into the
background color. Give it a try: find the border-color property
and set it to white.

border-color: white;
And here we’ve changed
the border color from
black to white.

Save the file and reload again. Now you should see the ragged border:

 Browsers don't always agree on
the size of thin, medium, and thick.

Browsers can have different default
sizes for the keywords thin, medium, and
thick, so if the size of your border is really

important to you, consider using pixel sizes instead.

390 Chapter 9

testing fancy borders

Nice! I can’t wait to see
the entire page remodeled.
Take a break and have an

iced chai on me!

Congratulations!
Bravo! You’ve taken an ordinary HTML
paragraph and transformed it into something
a lot more appealing and stylish using only 15
lines of CSS.

It was a long trip getting here, so at this point
we encourage you to take a little break. Grab
yourself an iced chai and take a little time to
let things sink in—when you come back, we’ll
nail down a few more of the fine points of CSS.

you are here 4 391

the box model

While you’re drinking that iced chai, try your hand at adding a border-radius to the guarantee paragraph.
We’ve got some examples below of the guarantee paragraph with a variety of border-radius values set.
Write the CSS to create the border you see in the example. For each example, we’ve provided the size
of the border-radius used to create the rounded corners in that example.

Write your CSS here.

30px

40px

40px

2em

392 Chapter 9

when to use classes

Welcome back, and good timing. We’re just about to listen
in on an interview with a class…

Head First: Hey, Class; you know we’ve been making good use of you, but we
still don’t know a lot about you.

Class: Well, there’s not all that much to know. If you want to create a “group, ”
so to speak, that you can style, just come up with a class, put your elements in it,
and then you can style all the elements in that class together.

Head First: So the class lets you take sets of elements and apply one or more
style properties to them?

Class: Exactly. Say you have some holiday-themed areas in your page—one
Halloween, one Christmas. You could add all Halloween elements to the
halloween class and all Christmas elements to the christmas class. Then you
can style those elements independently—say, orange for Halloween and red for
Christmas—by writing rules that apply to each class.

Head First: That makes a lot of sense. We just saw a good example of that in
this chapter, didn’t we?

Class: I’m not sure; I was off working. You’ll have to catch me up.

Head First: Well, we have a paragraph on the Head First Lounge page that
contains a written guarantee from the owners, and they want this paragraph to
stand out independently of the other paragraphs.

Class: So far, so good…but let me ask you this: are there a few of these
paragraphs, or just the one?

Head First: Well, I don’t think there is any reason to have multiple guarantee
paragraphs, and I don’t see the same style being applied anywhere else in the
page, so just the one.

Class: Hmmm, I don’t like the sound of that. You see, classes are meant to be
used for styles that you want to reuse with multiple elements. If you’ve got one
unique element that you need styled, that’s not really what classes are for.

Head First: Wait a second—a class seemed to work perfectly…how can this be
wrong?

Class: Whoa, now, don’t freak out. All you need to do is switch your class
attribute to an id attribute. It will only take you a minute.

The Class Exposed
This week’s interview:
Are classes always right?

you are here 4 393

the box model

Head First: An id attribute? I thought those were for those link destinations, like
in Chapter 4?

Class: ids have lots of uses. They’re really just unique identifiers for elements.

Head First: Can you tell us a little more about id attributes? This is all news to
me. I mean, I just went through an entire chapter using class incorrectly!

Class: Hey, no worries; it’s a common mistake. Basically, all you need to know
is that you use a class when you might want to use a style with more than one
element. And if what you need to style is unique and there’s only one on your
page, then use an id. The id attribute is strictly for naming unique elements.

Head First: Okay, I think I’ve got it, but why does it really matter? I mean, class
worked just fine for us.

Class: Because there are some things you really want only one of on your page.
The guarantee paragraph you mentioned is one example, but there are better
examples, like the header or footer on your page, or a navigation bar. You’re not
going to have two of those on a page. Of course, you can use a class for just one
element, but someone else could come along and add another element to the
class, and then your element won’t have a unique style anymore. It also becomes
important when you are positioning HTML elements, which is something you
haven’t gotten to yet.

Head First: Well, okay, Class. This conversation has certainly been educational
for us. It sounds like we definitely need to convert that paragraph from a class to
an id. Thanks again for joining us.

Class: Any time, Head First!

Choose whether you’d use class or id for the following elements:

Answer: The footer, the picture of the day, and the to-do list are
great candidates for using id.

A set of <p> elements
containing movie reviews.

An element containing
your to-do list.

<q> elements containing
Buckaroo Banzai quotes.

id class

A paragraph containing the footer
of a page.

A set of headings and paragraphs
that contain company biographies.

An element containing a
“picture of the day.”

id class

394 Chapter 9

identifying elements

The id attribute

Q: What’s the big deal? Why do I need an id just
to prove something is unique on the page? I could
use a class exactly the same way, right?

A: Well, you can always “simulate” a unique id with
a class, but there are many reasons not to. Say you’re
working on a web project with a team of people. One
of your teammates is going to look at a class and think
it can be reused with other elements. If, on the other
hand, she sees an id, then she’s going to know that’s
for a unique element. There are a couple of other
reasons ids are important that you won’t see for a few
chapters. For instance, when you start positioning
elements on a page, you’ll need each element you
want to position to have a unique id.

Q: Can an element have an id and also belong
to a class?

A: Yes, it can. Think about it this way: an id is just
a unique identifier for an element, but that doesn’t
prevent it from belonging to one or more classes (just
like having a unique name doesn’t prevent you from
joining one or more clubs).

Because you’ve already used ids on <a> elements, and because you already know how
to use a class attribute, you’re not going to have to learn much to use the id attribute.
Say you have a footer on your page. There’s usually only one footer on any page, so that
sounds like the perfect candidate for an id. Here’s how you’d add the identifier footer to
a paragraph that contains the footer text:

<p id="footer">Please steal this page, it isn't copyrighted in any way</p>

Similar to a class; just add the
attribute “id” and choose a
unique id name.

Unlike a class, you can only
have one element in your
page with an id of “footer”.

Each element can
have only one id.

No spaces or special characters
are allowed in id names.

Giving an element an id is similar to adding an element to a class. The only differences are
that the attribute is called id, not class; an element can’t have multiple ids; and you can’t
have more than one element on a page with the same id.

you are here 4 395

the box model

But how do I use id in CSS?
You select an element with an id almost exactly like you select an element with a
class. To quickly review: if you have a class called specials, there are a couple
of ways you can select elements using this class. You could select just certain
elements in the class, like this:

p.specials {

 color: red;

}

.specials {

 color: red;

}

Or you can select all the elements that belong to the specials class, like this:

This selects only paragraphs that are in the specials class.

This selects all elements in the specials class.

#footer {

 color: red;

}
This selects any element that has the id “footer”.

Using an id selector is very similar. To select an element by its id, you use a # (hash mark)
character in front of the id (compare this to class, where you use a . [dot] in front of the
class name). Say you want to select any element with the id footer:

Or you could select only a <p> element with the id footer, like this:

p#footer {

 color: red;

}
This selects a <p> element if it has the id “footer”.

The other difference between class and id is that an id selector should match
only one element in a page.

396 Chapter 9

using and selecting an id

Using an id in the lounge
Our guarantee paragraph really should have an id since it’s
intended to be used just once in the page. While we should have
designed it that way from the beginning, making the change is
going to be quite simple.

Step one: Change the class attribute to an id in your “lounge.html” file

Step two: Change the “.guarantee” class selector in “lounge.css” to an id selector

#guarantee {
 line-height: 1.9em;
 font-style: italic;
 font-family: Georgia, "Times New Roman", Times, serif;
 color: #444444;
 border-color: white;
 border-width: 1px;
 border-style: dashed;
 background-color: #a7cece;
 padding: 25px;
 padding-left: 80px;
 margin: 30px;
 margin-right: 250px;
 background-image: url(images/background.gif);
 background-repeat: no-repeat;
 background-position: top left;
}

<p id="guarantee">

 Our guarantee: at the lounge, we're committed to providing

 you, our guest, with an exceptional experience every time you

 visit. Whether you're just stopping by to check in on email

 over an elixir, or are here for an out-of-the-ordinary dinner,

 you'll find our knowledgeable service staff pay attention to every

 detail. If you're not fully satisfied, have a Blueberry Bliss Elixir

 on us.

</p>

Just change the class
attribute to an id.

Just change the . to a
in the selector.

you are here 4 397

the box model

Step three: Save your changes and reload the page

Well, everything should look
EXACTLY the same. But don’t
you feel much better now that
everything is as it should be?

Q: So why did you make the selector #guarantee rather
than p#guarantee?

A: We could have done either, and they both would select
the same thing. On this page, we know that we will always
have a paragraph assigned to the id, so it doesn’t really matter
(and #guarantee is simpler). However, on a more complex set
of pages, you might have some pages where the unique id is
assigned to, say, a paragraph, and on others it’s assigned to a
list or block quote. So you might want several rules for the id, like
p#someid, and blockquote#someid, depending on which kind of
element is on the page.

Q: Should I always start with a class, and then change it
to an id when I know it’s going to be unique?

A: No. You’ll often know when you design your pages if an
element is going to be unique or not. We only did things this way
in the chapter because, well, you didn’t know about id when we
started. But don’t you think we tied id into the story rather nicely?

Q: What are the rules for class and id names?

A: Class names should begin with a letter, but id names can
start with a number or a letter. Both id and class names can
contain letters and numbers as well as the _ character, but no
spaces. So “number1” works, as does “main_content”, but not
“header content”. Just remember, ids must be unique!

398 Chapter 9

using more than one stylesheet

Remixing stylesheets
Before we wind this chapter down, let’s have a little fun
remixing some stylesheets. So far, you’ve been using only
one stylesheet. Well, who ever said you can’t use more than
one stylesheet? You can specify a whole set of stylesheets to
be used with any HTML. But you may be wondering why
anyone would want to. There are a couple of good reasons.
Here’s the first one…

Imagine that the Head First Lounge takes off, gets
franchised, does the IPO, and so on (all thanks to you and
your terrific web work, of course). Then there would be
a whole corporate website with hundreds of pages, and
obviously you’d want to style those pages with external
CSS stylesheets. There would be various company
divisions, and they might want to tweak the styles in
individual ways. And the lounge franchises also might want
some control over style. Here’s how that might look:

Corporate

Beverage
Division

Seattle Lounge
(part of the Beverage

Division)

We’ve set up all the main
styles to be used by the

company websites—fonts,
colors, and so on.

We use all
the corporate colors

and fonts, but we add in a few
special touches of our own, like a

different line height.

We’ve got a young, hip
clientele. We tweak the

colors a bit and add a little
edge, but overall we use the

division’s main styles.

you are here 4 399

the box model

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>Head First Lounge</title>

 <link type="text/css" href="corporate.css" rel="stylesheet">

 <link type="text/css" href="beverage-division.css" rel="stylesheet">

 <link type="text/css" href="lounge-seattle.css" rel="stylesheet">

 </head>

 <body>

 .

 .

 .

 </body>

</html>

In your HTML, you can specify
more than one stylesheet. Here,
we’ve got three.

One stylesheet
for the entire
corporation.

The beverage division can add
to the corporate style a little,
or even override some of the
corporate styles.

Order matters! A
stylesheet can override
the styles in the
stylesheets linked above it.

So how do you start with a corporate style and then allow the division and
the lounge franchises to override and make changes to the styles? You use
several stylesheets, like this:

Using multiple stylesheets

Q: So the order of the stylesheets
matters?

A: Yes, they go top to bottom, with the
stylesheets on the bottom taking precedence.
So if you have, say, a font-family property
on the <body> element in both the corporate
and the division stylesheets, the division’s
takes precedence, since it’s the last one
linked in the HTML.

Q: Do I ever need this for a simple
site?

A: You’d be surprised. Sometimes there’s
a stylesheet you want to base your page on,
and rather than changing that stylesheet,
you just link to it, and then supply your own
stylesheet below that to specify what you
want to change.

Q: Can you say more about how the
style for a specific element is decided?

A: We talked a little about that in Chapter
7. And for now, just add to that knowledge
that the ordering of the stylesheets linked
into your file matters. In the next chapter,
after you’ve learned a few other CSS details,
we’re going to go through exactly how the
browser knows which style goes with which
element.

And the lounge in Seattle
has its own tweaks in its
stylesheet.

400 Chapter 9

targeting media types

Stylesheets—they’re not just for
desktop browsers anymore…
There’s actually another reason you might want to have multiple style
files: let’s say you want to tailor your page’s style to the type of device
your page is being displayed on (desktops, laptops, tablets, smartphones,
or even printed versions of your pages). Well, to do that there is a media
attribute you can add to the <link> element that lets you use only the
style files that are appropriate for your device. Let’s look at an example:

The media attribute
allows you to specify
the type of device this
stylesheet is for.

Here our query specifies
anything with a screen
(as opposed to, say, a
printer, or 3D glasses,
or a braille reader)…

There are a variety of propeties you can use in your queries, like min-
device-width, max-device-width (which we just used), and the
orientation of the display (landscape or portrait), to name just a few.
And keep in mind you can add as many <link> tags to your HTML as
necessary to cover all the devices you need to.

<link href="lounge-mobile.css" rel="stylesheet" media="screen and (max-device-width: 480px)">

…and any device that has a width
of at most 480 pixels.

Likewise, we could create a query that matches the device if it is a printer,
like this:

<link href="lounge-print.css" rel="stylesheet" media="print">

The lounge-print.css
file is only going to
be used if…

…the media type is “print”,
which means we’re viewing
it on a printer.

You specify the type of
device by creating a “media
query,” which is matched
with the device.

you are here 4 401

the box model

There’s another way to target your CSS to devices with specific properties: rather
than using media queries in link tags, you can also use them right in your CSS.
Here’s an example:

@media screen and (min-device-width: 481px) {
 #guarantee {
 margin-right: 250px;
 }
}
@media screen and (max-device-width: 480px) {
 #guarantee {
 margin-right: 30px;
 }
}
@media print {
 body {
 font-family: Times, "Times New Roman", serif;
 }
}

p.specials {
 color: red;
}

And then put all the rules that
apply to devices matching this
query within curly braces.
So, these rules will be used if the
screen is wider than 480px…

…these rules will be used if the
screen is 480px or less…

…and these rules will be used if
you're printing the page.

All other rules apply to all pages because they
aren’t contained within a @media rule.

So, the way this works, only the CSS rules that are specific to a media type are included in
an @media rule. All the rules that are common to all the media types are included in the
CSS file below the @media rules, so that way you don’t have any unnecessarily repeated
rules. And, when a browser loads the page, it determines through the media queries the
rules that are appropriate for the page, and ignores any that don’t match.

Media queries are an area of active
development by the standards groups,
so keep your eyes on evolving best
practices for targeting devices.

Add media queries right into your CSS

Use the @media rule… …followed by your query.

 Media queries
are not
supported by
IE8 and earlier.

402 Chapter 9

testing your media queries skills

Look at the devices below along with their specs. Can you design a set of media queries
to target each device?

<link rel="stylesheet" href="lounge-smartphone.css"
 media=" ">

<link rel="stylesheet" href="lounge-tablet-portrait.css"
 media=" ">

<link rel="stylesheet" href="lounge-tablet-landscape.css"
 media=" ">

<link rel="stylesheet" href="lounge-pc.css"
 media=" ">

<link rel="stylesheet" href="lounge-tv.css"
 media=" ">

Your answers here!

Smartphone:
480 by 640
pixels

Tablet, portrait,
or landscape:
1,024 by 768
pixels Desktop PC: 1,280

by 960 pixels
Internet TV: 2,650 by 1,600
pixels, landscape

you are here 4 403

the box model

Q: That’s pretty cool. So I can set
up different stylesheets for different
devices?

A: Yes, you can set up several
stylesheets and then link to them all in your
HTML. It’s the browser’s job to use the right
stylesheet based on the media type and the
characteristics you specify in your media
query.

Q: Are there other media properties
besides max-device-width and min-
device-width?

A: Yes, there are quite a few, including
max and min width (different from device-
width, as you'll see shortly), max and min
height, orientation, color, aspect ratio, and
more. Check out the CSS3 Media Queries
specification for all the details (http://www.
w3.org/TR/css3-mediaqueries/), and Head
First Mobile Web for examples.

Q: Is it better to use <link> or @media
to specify different CSS rules for different
media types and characteristics?

A: Either one will work. But notice that
if you put all your rules in one file and split
them up using @media rules, your CSS
could get pretty big. By using different <link>
elements for different media types, you can
keep your CSS organized in different files
depending on the media type. So, if your
CSS files are fairly large, we recommend
using <link> elements to specify different
stylesheets.

In your “chapter9/lounge” folder, you’ll find “lounge-print.css”. Open up “lounge.html” in the
“chapter9/lounge” folder and add a new link to this stylesheet for the media type “print”. Make
sure you also add the attribute media=“screen” to the <link> element that links to “lounge.css”,
so you have one stylesheet for the screen, and one for the printer. Then save, reload the
page, and choose your browser’s Print option. Run to the printer to see the result!

Optional printer required, not included with book.

<link type="text/css" href="lounge-print.css"
 rel="stylesheet" media="print">

Here’s the new link you need to
add to your “lounge.html” file.

Here’s the printed version. You’ve totally
changed how the page looks when it’s
printed, using CSS. That structure versus
presentation thing is really paying off.

404 Chapter 9

testing different css files for different widths

The max-device-width and min-device-width media characteristics are dependent on the
actual screen size of the device (not the width of your browser window). What if you are
more concerned with the size of the browser? Well, you can use the max-width and min-
width properties instead, which represent the maximum and minimum width of the browser
window itself (not the screen size). Let’s see how this works: In your “chapter9/lounge” folder,
you’ll find “lounge-mobile.css”. Open up your lounge.html file again, and change the <link>
elements in the <head> of the document to look like this:

<link type="text/css" rel="stylesheet" href="lounge.css"
 media="screen and (min-width: 481px)">

<link type="text/css" href="lounge-mobile.css" rel="stylesheet"
 media="screen and (max-width: 480px)">

<link type="text/css" href="lounge-print.css" rel="stylesheet" media="print">

Now, reload the “lounge.html” page in your browser. Make sure the browser window is nice and big. You
should see the lounge page as normal.
Next, make your browser window narrow (less than 480 pixels). What happens to the lounge page? Do
you notice a difference? Describe below what happens when you make the web page narrow and load
the page. Why is this version of the page better for mobile browsers?

Make sure you’re using a modern browser! If you’re using IE, that means IE9+.

you are here 4 405

the box model

 � CSS uses a box model to control how
elements are displayed.

 � Boxes consist of the content area and
optional padding, border, and margin.

 � The content area contains the content of the
element.

 � The padding is used to create visual space
around the content area.

 � The border surrounds the padding and
content and provides a way to visually
separate the content.

 � The margin surrounds the border, padding,
and content, and allows space to be added
between the element and other elements.

 � Padding, border, and margin are all optional.

 � An element’s background will show under the
content and the padding, but not under the
margin.

 � Padding and margin size can be set in pixels
or percentages.

 � Border width can be set in pixels or by using
the keywords thin, medium, and thick.

 � There are eight different styles for borders,
including solid, dashed, dotted, and ridge.

 � For margins, padding, or the border, CSS
provides properties for setting all the sides
(top, right, bottom, left) at once, or it allows
them to be set independently.

 � Use the border-radius property to create
rounded corners on an element with a border.

 � Use the line-height property to add space
between lines of text.

 � You can place an image in the background
of an element with the background-image
property.

 � Use the background-position and
background-repeat properties to set the
position and tiling behavior of the background
image.

 � Use the class attribute for elements that you
want to style together, as a group.

 � Use the id attribute to give an element
a unique name. You can also use the id
attribute to provide a unique style for an
element.

 � There should only be one element in a page
with a given id.

 � You can select elements by their id using the
id selector; for example, #myfavoriteid.

 � An element can have only one id, but it can
belong to many classes.

 � You can use more than one stylesheet in your
HTML.

 � If two stylesheets have conflicting property
definitions, the stylesheet that is last in the
HTML file will receive preference.

 � You can target devices by using media
queries in your <link> element or the @media
rule in your CSS.

406 Chapter 9

paying attention?

HTMLcross
You’re really expanding your HTML and CSS skills. Strengthen
those neural connections by doing a crossword. All the answers
come from this chapter.

Across
1. By default, background images do this.
4. To create a “ragged” border, use the ______ border
style.
6. Padding, borders, and margins are all ________.
9. Which kind of elixir do you get if you’re not fully
satisfed?
10. Between padding and margin.
13. We changed the ______ class to an id.
14. To use a different style for different devices, use
_______ queries.

Down
2. The space between the content and the border.
3. If you want your element to have a unique style, use
this kind of selector.
5. Property used to increase the space between lines
of text.
7. Publishing term for the space between lines.
8. The preferred font used in the guarantee paragraph.
10. CSS sees every element as a _____.
11. Style of border we used on the guarantee
paragraph.
12. Optional <link> attribute for other kinds of ______.

1 2

3

4 5

6

7 8

9

10 11 12

13

14

Across
1. By default, background images do

this.
4. To create a "ragged" border, use

the ______ border style.
6. Padding, borders, and margins are

all _____.
9. Which kind of elixir do you get if

you're not fully satisfied.
10. Between padding and margin.
13. We changed the _____ class to an

id.
14. To use a different style for

different devices, use _____
queries.

Down
2. The space between the content and

the border.
3. If you want your element to have a

unique style, use this kind of
selector.

5. Property used to increase the
space between lines of text.

7. Publishing term for the space
between lines.

8. The preferred font used in the
guarantee paragraph.

10. CSS sees every element as a
____.

11. Style border we used on the
guarantee paragraph.

you are here 4 407

the box model

Left
margin

Right
margin

Top margin

Bottom margin

Left
padding

Right
padding

Bottom padding

Top padding

See if you can identify the padding, border, and margins of this paragraph.
Mark all the padding and margins (left, right, top, and bottom):

408 Chapter 9

exercise solutions

.guarantee {
 line-height: 1.9em;
 font-style: italic;
 font-family: Georgia, "Times New Roman", Times, serif;
 color: #444444;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
 margin: 30px;
}

You can add the new properties anywhere in
the rule. We added them at the top.

If you look at the guarantee paragraph as it’s supposed to look in its final form, it has an
italic, serif font, a greater line height than the rest of the page, and (if you’re looking really
close) gray text. Write the CSS below to set the line height to 1.9em, the font style to italic,
the color to #444444, and the font family to Georgia, “Times New Roman”, Times, serif.
Here’s the solution…did you test it?

Notice that if a font name has spaces in it,
you should surround it with quotes.

An italic, serif fontIncreased line height

Gray color gives the
text a softer look.

you are here 4 409

the box model

HTMLcross Solution

R1 E P2 E A T
I3 A
D4 A S H E D L5

D I
O6 P T I O N A L

N E
G H

L7 G8 E
B9 L U E B E R R Y B L I S S

A O G
B10 O R D E R D11 H M12

O I G13 U A R A N T E E
X N I S D

G A H I
M14 E D I A A

D

Across
1. By default, background images do

this. [REPEAT]
4. To create a "ragged" border, use

the ______ border style.
[DASHED]

6. Padding, borders, and margins are
all _____. [OPTIONAL]

9. Which kind of elixir do you get if
you're not fully satisfied.
[BLUEBERRYBLISS]

10. Between padding and margin.
[BORDER]

13. We changed the _____ class to an
id. [GUARANTEE]

Down
2. The space between the content and

the border. [PADDING]
3. If you want your element to have a

unique style, use this kind of
selector. [ID]

5. Property used to increase the
space between lines of text.
[LINEHEIGHT]

7. Publishing term for the space
between lines. [LEADING]

8. The preferred font used in the
guarantee paragraph. [GEORGIA]

10. CSS sees every element as a
____. [BOX]

11. Style border we used on the
guarantee paragraph. [DASHED]

410 Chapter 9

exercise solutions

Look at the devices below along with their specs. Can you design a set of media queries
to target each device?

Our answers here. Did you get the same answers? There are many
ways to do this with varying degrees of specificity. If you did it
differently, are yours better or worse than ours?

Smartphone:
480 by 640
pixels

Tablet, portrait,
or landscape:
1,024 by 768
pixels Desktop PC: 1,280

by 960 pixels
Internet TV: 2,650 by 1,600
pixels, landscape

<link rel="stylesheet" href="lounge-smartphone.css"
 media=" ">

<link rel="stylesheet" href="lounge-tablet-portrait.css"
 media=" ">

<link rel="stylesheet" href="lounge-tablet-landscape.css"
 media=" ">

<link rel="stylesheet" href="lounge-pc.css"
 media=" ">

<link rel="stylesheet" href="lounge-tv.css"
 media=" ">

screen and (max-device-width: 480px)

screen and (max-device-width: 1024px) and (orientation:portrait)

screen and (max-device-width: 1024px) and (orientation:landscape)

screen and (max-device-width: 1280px)

screen and (max-device-width: 2650px)

Media query support across devices
is evolving, so check the Web for the
latest and greatest techniques.

you are here 4 411

the box model

While you’re drinking that iced chai, try your hand at adding a border-radius to the guarantee paragraph.
We’ve got some examples below of the guarantee paragraph with a variety of border-radius values set.
Write the CSS to create the border you see in the example. For each example, we’ve provided the size
of the border-radius used to create the rounded corners in that example.

Write your CSS here.
30px

40px

40px

2em

border-top-left-radius: 30px;
border-top-right-radius: 0px;
border-bottom-right-radius: 0px;
border-bottom-left-radius: 30px;

border-top-left-radius: 40px;
border-top-right-radius: 40px;
border-bottom-right-radius: 40px;
border-bottom-left-radius: 40px;

border-top-left-radius: 0px;
border-top-right-radius: 40px;
border-bottom-right-radius: 40px;
border-bottom-left-radius: 40px;

border-top-left-radius: 0em;
border-top-right-radius: 2em;
border-bottom-right-radius: 0em;
border-bottom-left-radius: 2em;

412 Chapter 9

exercise solutions

The max-device-width and min-device-width media characteristics are dependent on the
actual screen size of the device (not the width of your browser window). What if you are
more concerned with the size of the browser? Well, you can use the max-width and min-
width properties instead, which represent the maximum and minimum width of the browser
window itself (not the screen size). Let’s see how this works: In your “chapter9/lounge” folder,
you’ll find “lounge-mobile.css”. Open up your lounge.html file again, and change the <link>
elements in the <head> of the document to look like this:

<link type="text/css" rel="stylesheet" href="lounge.css"
 media="screen and (min-width: 481px)">

<link type="text/css" href="lounge-mobile.css" rel="stylesheet"
 media="screen and (max-width: 480px)">

<link type="text/css" href="lounge-print.css" rel="stylesheet" media="print">

Now, reload the “lounge.html” page in your browser. Make sure the
browser window is nice and big. You should see the lounge page as
normal.
Next, make your browser window narrow (less than 480 pixels). What
happens to the lounge page? Do you notice a difference? Describe
below what happens when you make the web page narrow and load
the page. Why is this version of the page better for mobile browsers?

Make sure you’re using a modern browser! If you’re using IE, that means IE9+.

When we make the lounge page narrower
than 480 pixels, the guarantee paragraph
changes style. The right margin gets
reduced from 250px to 30px (to match
the rest of the margin); the background
star image disappears, and the extra
padding on the left goes away too.

This version will work better for mobile
browsers because the guarantee paragraph
gets too narrow with the CSS that's
designed for wider screens. By removing
the background image and the extra
margin and padding, the paragraph is easier
to read. And it's really the content that
matters at the end of the day, right?

this is a new chapter 413

It’s time to get ready for heavy construction. In this chapter we’re

going to roll out two new HTML elements: <div> and . These are no simple

“two by fours”; these are full-blown steel beams. With <div> and , you’re going

to build some serious supporting structures, and once you’ve got those structures in

place, you’re going to be able to style them all in new and powerful ways. Now, we

couldn’t help but notice that your CSS toolbelt is really starting to fill up, so it’s time

to show you a few shortcuts that will make specifying all these properties a lot easier.

And we’ve also got some special guests in this chapter, the pseudo-classes, which

are going to allow you to create some very interesting selectors. (If you’re thinking

that “pseudo-classes” would make a great name for your next band, too late; we beat

you to it.)

divs and spans10

Advanced Web Construction
Some builders say,

“measure twice, cut once.”
I say, “plan, div, and span.”

414 Chapter 10

a new lounge assignment

You know, we’d love it if you
could make the elixir specials a

little more attractive on the web
page. Could you make it look just

like our handout menu?

The elixir
mixer, Alice

Here’s the handout menu with the elixir
specials. Wow, the design is a lot different
than the rest of the page: it’s thin, the text
is centered, and there are red headings, an
aquamarine border around the whole thing,
and even some cocktail graphics at the top.

you are here 4 415

divs and spans

A close look at the elixirs HTML

<h2>Weekly Elixir Specials</h2>

<p>

</p>
<h3>Lemon Breeze</h3>
<p>
 The ultimate healthy drink, this elixir combines
 herbal botanicals, minerals, and vitamins with
 a twist of lemon into a smooth citrus wonder
 that will keep your immune system going all
 day and all night.
</p>

<p>

</p>
<h3>Chai Chiller</h3>
<p>
 Not your traditional chai, this elixir mixes maté
 with chai spices and adds an extra chocolate kick for
 a caffeinated taste sensation on ice.
</p>

<p>

</p>
<h3>Black Brain Brew</h3>
<p>
 Want to boost your memory? Try our Black Brain Brew
 elixir, made with black oolong tea and just a touch
 of espresso. Your brain will thank you for the boost.
</p>

<p>
 Join us any evening for these and all our
 other wonderful
 <a href="beverages/elixir.html"
 title="Head First Lounge Elixirs">elixirs.
</p>

Alice sure has asked for a tall order, hasn’t she? She wants us to take the existing lounge HTML
and make it look like the handout menu. Hmmm…that looks challenging, but we do have CSS
on our side, so let’s give it a try. But before we jump right into styling, let’s get an overview
of the existing HTML. Here’s just the HTML snippet for the elixir specials; you’ll find it in

“lounge.html” in the “chapter10/lounge” folder:

The elixir specials section begins
with an <h2> heading.

Each elixir has
an image in a
<p> element.
…a name, in an
<h3> heading…

…and a
description,
also in a
paragraph.

And, finally, at the
bottom, there is
another paragraph, with
some text and a link to
the real elixirs page.

And this
structure is
repeated for
each elixir.

We have
three
elixirs,
each with
the same
structure.

416 Chapter 10

a new element named div

Jim: Come on, Frank, you know we can just create a class or two and then
style all the elixir elements separately from the rest of the page.

Frank: That’s true. Maybe this isn’t so bad. I’m sure there is a simple
property to make text align to the center. And we know how to handle the
colored text.

Jim: Wait a sec, what about that border around everything?

Frank: Piece of cake. We just learned how to make borders. Remember,
every element can have one.

Joe: Hmm, I don’t think so. If you look at the HTML, this is a bunch of
<h2>, <h3>, and <p> elements. If we put separate borders on every element,
they’ll just look like separate boxes.

Frank: You’re right, Joe. What we need is an element to nest all these other
elements inside, so we can put a border on that. Then we’ll have one border
around everything in the elixirs section of the page.

Jim: Well, I see why you get paid the big bucks, Frank. Could we nest the
elixir stuff inside a <p> element, or a <blockquote>?

Frank: Well, that would ruin the structure and meaning of the page, an
elixir menu isn’t a paragraph or a block quote. Feels like a hack to me…

Frank: …actually, I don’t think we’re that far off. I’ve been reading a certain
book on HTML and CSS, and I’m just up to a section on a new element
called <div>. I think it might be the tool we need.

Joe: <div>—what’s that? It sounds like it’s for math.

Frank: That’s not far off, because a <div> lets you divide your page into
logical sections or groupings.

Jim: Hey, that sounds like exactly what we need!

Frank: Yup. Let me show you guys how to divide a page into logical
sections, and then I’ll show you what I know about <div>…

This looks tough, guys.
There are a lot of style changes
we’ve got to make, and the elixirs

style doesn’t really match the
rest of the page.

Jim Frank
Joe

you are here 4 417

divs and spans

Let’s explore how we can divide
a page into logical sections

This is a pretty normal-
looking page: lots of
headings, paragraphs, and
an image in there.

p

h2

img

h2

h1

p

p

p

Dogs

p

p

p

h1

h2

img

h2

p

Cats

Take a look at the web page to the right: it’s a web
page for PetStorz.com, and we’re going to spend a
few pages looking at how we might add some more
structure to it by identifying some logical sections and
then enclosing those inside a <div> element.

But by just focusing on the structure of the page,
you can’t really tell a whole lot about the page.
What elements make up the header? Is there a
footer on the page? What are the content areas?

Okay, so our job is to locate “logical sections”
in this page. What’s a logical section? It’s just
a group of elements that are all related on the
page. For instance, in the PetStorz.com web
page, there are some elements that are used for
the cats area on the page, and some that are
used for dogs. Let’s check it out.

Identifying your logical sections

The PetStorz page has two main content
areas, one for cats, and one for dogs. It
has some other areas too, but we’ll come
back to those.

In this case, both the cats and dogs sections
consist of two elements, a heading and a
paragraph. But often these groupings can
contain many more elements.

We’ve drawn an outline
of the PetStorz page.

418 Chapter 10

how to mark up logical sections with divs

p

div

div

p

h2

p
img

h2

h1

p

p

p

h2

img

h2

h1

p

p

div id=“dogs”

div id=“cats”

Now that you know which elements belong
in each section, you can add some HTML
to mark up this structure. The common
way to do this is to place <div> opening
and closing tags around the elements that
belong to a logical section. Let’s first do this
pictorially, and then we’ll come back to the
real markup in a couple of pages.

Using div s to mark sections Let’s nest the elements in each
grouping in a <div> element.

Here’s our cat group.

And here’s our
dog group.

Just by nesting your elements in <div>s,
you’ve indicated that all those elements
belong to the same group. But you
haven’t given them any kind of label
that says what the grouping means,
right?

A good way to do that is to use an id
attribute to provide a unique label for
the <div>. For instance, let’s give the
cats <div> an id of “cats” and the
dogs <div> an id of “dogs”.

Labeling the div s

Here we’ve added an id
of “cats” to the first
<div> to indicate what
the logical section is for.

And likewise for dogs

you are here 4 419

divs and spans

img

On a referral from the Starbuzz
CEO, you’ve been asked to
come in and consult on style
changes to PetStorz main
page. How quickly would you
understand the PetStorz web
page if you were shown Page
One?

What about Page Two?

p

h2

img

h1

p

p

div id=“dogs”

div id=“cats”

p

h2

img

h2

h1

p

p

p

Page TwoPage One

Okay, so you’ve added some logical
structure to the PetStorz page, and you’ve
also labeled that structure by giving each
<div> a unique id. That’s all you need
to start styling the group of elements
contained in the <div>.

Adding some style Now the <div>s
have a little style.

Here we have two rules, one
for each <div>. Each <div> is
selected by an id selector.

#cats {
 background-image: url(leopard.jpg);
}

#dogs {
 background-image: url(mutt.jpg);
}

Each rule sets the
background-image
property. For cats we
have a leopard image,
and for dogs we have
a mutt image.

By setting the
background on the
<div>, it also shows
through the elements
contained in the <div>.

The elements in the <div> will also
inherit some properties from the
<div>, just as any child element
does (like font-size, color, etc).

p

h2

p

h2

h2

h1

p

p

div id=“dogs”

div id=“cats”

420 Chapter 10

nesting divs

There are a couple of reasons you might
want to add more structure to your
pages with <div>s. First, you may want
to further expose the underlying logical
structure of your pages, which can help
others understand them, and also help
in maintaining them. Second, there are
times when you need the structure so
that you have a way to apply style to a
section. Often, you’ll want to add the
structure for both reasons.

So, in the case of PetStorz, we could
take this to the next level and add a few
more <div>s…

Exposing even more structure

Now we’ve added
another <div> with an
id indicating this is the
header of the page.

And another indicating
the footer of the page.

div id=“header”

p

h2

img

h2

h1

p

p

p

div id=“dogs”

div id=“cats”

div id=“footer”

And you don’t have to stop there. It is
common to nest structure, too. For instance,
in the PetStorz page, we have a cat section
and a dog section, and the two together are
logically the “pets” section of the page. So,
we could place both the “cats” and “dogs”
<div>s into a “pets” <div>.

Adding structure on structure
div id=“header”

p

img

h1

p

h2

h2

p

p

div id=“dogs”

div id=“cats”

div id=“footer”

div id=“pets”

Adding this structure through <div>s
can even help you think through your
page design. For instance, does this
lone <p> really need to be here?

Now we’ve marked up this HTML so that we
know there is a logical section in the page
with “pets” content in it. Further, that “pets”
section has two logical subsections, one for
“cats” and one for “dogs”.

you are here 4 421

divs and spans

Q: So, a <div> acts like a container
that you can put elements into to keep
them all together?

A: It sure does. In fact, we often describe
<div>s as “containers.” Not only do they act
as logical containers that you can use to hold
a bunch of related elements (like the “cat”
elements) together, but when we start styling
<div>s and using them for positioning in the
next chapter, you’ll see they act as graphical
containers, too.

Q: Beyond the structure I’m already
putting into my pages with headings and
paragraphs and so on, should I also be
adding a higher level of structure with
<div>s?

A: Yes and no. You want to add structure
where it has a real purpose, but don’t add
structure for structure’s sake. Always keep
your structure as simple as possible to get
the job done. For instance,

if it is helpful to add a “pets” section that
contains both “cats” and “dogs” to the
PetStorz page, by all means add it. However,
if it provides no real benefit, then it just
complicates your page. After working with
<div>s for a while, you’ll start to get a feel for
when and how much to use them.

Q: Do you ever put a <div> in a class
instead of giving it an id?

A: Well, remember that an element can
have an id and be in one or more classes at
the same time, so the choice isn’t mutually
exclusive. And, yes, there are many times
you create <div>s and place them into
classes. Say you have a bunch of album
sections in a page of music playlists; you
might put all the elements that make up the
album into a <div> and then put them all
in an “albums” class. That identifies where
the albums are, and they can all be styled
together with the class. At the same time,
you might give each album an id so that it
can have additional style applied separately.

Q: I was having a little trouble
following the <div> within <div> stuff,
with the “pets” and “cats” and “dogs”.
Could you explain that a little more?

A: Sure. You’re used to elements being
nested in other elements, right? Like a <p>
nested in a <body> nested in an <html>
element. You’ve even seen lists nested
within lists. The <div> is really no different;
you’re just nesting an element inside another
element, and, in the case of PetStorz, we’re
using it to show larger chunks of structure (a
“cats” and “dogs” nested in a “pets” section).
Or, you might use <div>s to have a beer
section nested in a beverages section nested
in a menu section.
But the best way to understand why you’d
want something like a <div> within a <div> is
by using them and encountering a situation
where they mean something to you. Put this
in the back of your mind, and you’ll see an
example soon enough where we need one.

Use, don’t abuse, <div>s in your pages. Add more
structure where it helps you separate a page into logical
sections for clarity and styling. Adding <div>s just for
the sake of creating a lot of structure in your pages
complicates them with no real benefit.

422 Chapter 10

adding divs to the lounge

Meanwhile, back at the lounge…
Enough “theory” about <div>s—let’s get one into the lounge page. Remember, we’re trying to get all
the elixir elements into a group and then we’re going to style it to make it look like the elixir handout. So,
open up your “lounge.html” file in the “chapter10/lounge” folder, locate the elixir elements, and then
insert opening and closing <div> tags around them.

<div id="elixirs">
 <h2>Weekly Elixir Specials</h2>

 <p>

 </p>
 <h3>Lemon Breeze</h3>
 <p>
 The ultimate healthy drink, this elixir combines
 herbal botanicals, minerals, and vitamins with
 a twist of lemon into a smooth citrus wonder
 that will keep your immune system going all
 day and all night.
 </p>

 <p>

 </p>

 <h3>Chai Chiller</h3>
 <p>
 Not your traditional chai, this elixir mixes maté
 with chai spices and adds an extra chocolate kick for
 a caffeinated taste sensation on ice.
 </p>

 <p>

 </p>

 <h3>Black Brain Brew</h3>
 <p>
 Want to boost your memory? Try our Black Brain Brew
 elixir, made with black oolong tea and just a touch
 of espresso. Your brain will thank you for the boost.
 </p>

 <p>
 Join us any evening for these and all our
 other wonderful
 <a href="beverages/elixir.html"
 title="Head First Lounge Elixirs">elixirs.
 </p>
</div> And here’s the closing tag.

Here’s the opening tag,
and we’ve given it an id of
“elixirs” to identify it.

Remember, we’re just
showing a snippet of
HTML from the entire
file. When you open
“lounge.html”, you’ll see
all the markup for the
page.

you are here 4 423

divs and spans

Taking the div for a test drive
That was easy, wasn’t it? Now that we’ve got a more
structured page, let’s fire up the browser and see
how it looks…

Hmmm…no change at all!
But that’s okay: the <div>
is pure structure, and it
doesn’t have any “look” or
default style in the page.

That said, a <div> is just a block
element, and you can apply any styles
you want to it. So, once you know how
to style a block element (and you do),
you know how to style a <div>.

Remember, the goal here is to restyle the elixir content on the page
so it looks like the handout.

Before we took a detour to learn about <div>s, we were trying to
figure out how to get a border around the entire set of elixirs. Now
that you’ve got a <div> in “lounge.html”, how would you go about
adding a border?

424 Chapter 10

adding style to a div

An over-the-border test drive
After you’ve added the CSS, save it and then reload
your “lounge.html” file.

Here’s the border that you just added
to the elixirs <div> element.

Notice that the border goes
around all the elements inside
the <div> element. The <div>
is a box like every other
element, so when you add
a border, the border goes
around the content, which is
all the elements in the <div>.

You added a visible border
to this <div>, but it still has
no padding and no margin.
We’ll need to add that too.

Adding a border
Now that you have a <div> around all the elements in the elixirs section,
the fun begins: you can style it.

The first thing we want to reproduce in the elixirs handout is a border that
wraps around all the elements in the elixirs section, right? Well, now that
you actually have a <div> element that wraps around the elixirs section,
you can style it and add a border. Let’s try that now.

You’ll need a new rule in the lounge’s CSS to select the <div> element
using its id. Open up your “lounge.css” file in the “chapter10/lounge”
folder, and add this rule at the end:

#elixirs {
 border-width: thin;
 border-style: solid;
 border-color: #007e7e;
}

Add this at the end of your CSS file. It
selects the elixirs <div> element using its id,
and adds a thin, solid border in our favorite
aquamarine color.

you are here 4 425

divs and spans

Adding some real style to
the elixirs section

The main heading
and the paragraph
text are black, while
the drink names are
a red color that
matches the red in
the logo.

The text and images
are centered, and
there’s padding on
the sides to add
space between the
text and the border.

The line-height of the
paragraphs looks a lot more
like the default line height for
the page (before we changed it
in the last chapter).

The font family is a sans-serif font, just
like the body font, so we don’t have to
change that. Remember that the <div>
element and all the elements nested in it
inherit the font family from the body.

The width of the elixirs
handout is narrower than the
rest of the page.There’s a background

image at the top.So far, so good. We’ve found a way to get
that border around the entire section. Now
you’re going to see how to use the <div> to
customize the styling of the entire elixirs section
independent of the rest of the page.

We obviously have some padding issues to deal
with, because the border is right up against the
content. But there’s a lot of other style we need
to work out, too. Let’s take a look at everything
we need to take care of…

This link is aquamarine.

426 Chapter 10

plan of attack

That’s a lot of new style, so let’s get a game plan together before
attacking it. Here’s what we need to do:

Working on the elixir width

The game plan

That’s a lot to do, so let’s get started.

The width property lets you specify the width of
the element’s content area. Here, we’re specifying
that the content width be 200 pixels.

We’d like the elixirs to be quite narrow, so it looks like the narrow
handout menu at the lounge; about 1/4 the width of a typical
browser window should be about right. So, let’s say you set your
browser to 800 pixels wide; that would be about 200 pixels. You’ve
set the widths of padding, borders, and margins, but you’ve never
set the width of an element before. To do that, you use the width
property, like this:

#elixirs {
 border-width: thin;
 border-style: solid;
 border-color: #007e7e;
 width: 200px;
}

Give this a try. Open your “lounge.css” and add this rule to the bottom.

We’re setting this on the elixirs <div>. So the content
in the elixirs <div> will be 200 pixels wide, and the
browser’s layout rules will work to fit all the elements
nested in the <div> within that width.

First, we’re going to change the width of the elixirs <div> to
make it narrower.

Next, we’ll knock out some of the styles you’re already familiar
with, like padding and the background image. We’ll also play
with the text alignment, which you haven’t seen before.

Then all we’ve got left are the text line heights and the heading
colors. You’re going to see that you need to upgrade your CSS
selector skills just a bit to get those changed.

you are here 4 427

divs and spans

Now all the content in the elixirs
<div> fits into a space that is 200
pixels wide. It doesn’t change, even if
you make your browser window really
wide, or really narrow. Try it!

200 pixels

Compare the behavior of the <div>
to that of the other elements
when you make your browser
window wide. The paragraphs
automatically expand to fill the
width of the browser. We’ll talk
about that more in a sec…

Notice that the
height of the elixirs
section got a lot
taller. That’s because
we made it narrower,
so the content
takes up more room
vertically instead.

Next, save the CSS and then reload the “lounge.html” file. You’ll see the elixirs
section get much skinnier, thanks to the width you gave it. The width of the
content in the <div> is now exactly 200 pixels. There’s also some interesting
behavior you should check out…

Test driving the width

Can you resize your browser window to less than the width of the elixirs <div>? Some browsers
won’t let you go that narrow; others will. If you can go narrower, compare the text in the elixirs
<div> with the rest of the text on the page. The other paragraphs resize themselves no matter
how wide or narrow you go, but the elixirs <div> never gets narrower or wider than 200 pixels.

428 Chapter 10

more about widths

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

I was wondering how the width
property relates to padding and
margins. Is this the width of the

content itself? Or the entire box,
including the padding and margin?

To figure out the width of the entire box, you
need to add the width of the content area to the
width of the left and right margins, the left and
right padding, and the border width. Don’t forget
that you have to include twice the border width,
because there is a border on the left and the right.

The width property specifies the
width for the content area only.

lef
t m

arg
in

wid
th

bo
rd

er
wid

th
lef

t p
ad

din
g w

idt
h

rig
ht

 pa
dd

ing
 w

idt
h

rig
ht

 m
arg

in
wid

th
bo

rd
er

wid
th

width
(specified
in width
property)

total width

you are here 4 429

divs and spans

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Well, then how do we
specify the width of the

entire element?

Say you set the content area width to be 300 pixels using the width property
in a CSS rule.

And let’s say you’ve set the margins to 20 pixels and the padding to 10 pixels, and you
have a 1-pixel border. What’s the width of your element’s box? Well, it’s the width of
the content area added to the width of the left and right margins, the left and right
padding, and the left and right border width. Let’ see how to calculate that…

You don’t. You specify the width of the content area,
the padding, the border, and the margin. All of that
added together is the width of the entire element.

20
 pi

xe
ls

1 p
ixe

l
10

 pi
xe

ls

10
 pi

xe
ls

20
 pi

xe
ls

1 p
ixe

l300

300 pixels

20 + 1 + 10 10 + 1 + 20

3131

31 + 31 = 62

(1) The content area is 300 pixels.

(2) Figure out how much is taken up by
the margins, padding, and border.

(3) It looks like 62 pixels are taken up, so
add that to the content area’s width of
300 pixels, and we have 300 + 62 = 362
pixels for the entire box.

430 Chapter 10

box width and height fine points

Q: If I don’t set the width of an
element, then where does the width come
from?

A: The default width for a block element
is “auto”, which means that it will expand to
fill whatever space is available. If you think
about any of the web pages we’ve been
building, each block element can expand to
the entire width of the browser, and that’s
exactly what it does. Now, hold this thought,
because we’re going to go into this in detail
in the next chapter. Just remember that
“auto” allows the content to fill whatever
space is available (after taking padding,
border, and margin into account).

Q: What if I don’t have any margin,
padding, or borders?

A: Then your content gets to use the
entire width of the box. If the width of the
content area is 300 pixels, and you have no
padding, border, or margin, then the width of
the entire box would also be 300 pixels.

Q: What are the different ways I can
specify widths?

A: You can specify an actual size—
usually in pixels—or you can specify a
percentage. If you use a percentage, then
the width is calculated as a percentage of
the width of the container the element is in
(which could be the <body>, a <div>, etc.).

Q: What about the height?

A: In general, the height of an element
is left at the default, which is auto, and the
browser expands the content area vertically
so all of the content is visible. Take a look
at the elixirs section after we set the width
to 200 pixels, and you’ll see the <div> got a
lot taller.
You can explicitly set a height, but you risk
having the bottom of your content overflow
into other elements if your height isn’t big
enough to contain it. In general, leave your
element heights unspecified so they default
to auto.

Here’s a box that has all the widths labeled. What is the width of the entire box?

30
 pi

xe
ls

2
pix

els
5 p

ixe
ls

10
 pi

xe
ls

20
 pi

xe
ls

2
pix

els200 pixels

Your answer here

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

you are here 4 431

divs and spans

We’ve got the width out of the way. What’s left to do?

#elixirs {
 border-width: thin;
 border-style: solid;
 border-color: #007e7e;
 width: 200px;

 padding-right: 20px;
 padding-bottom: 20px;
 padding-left: 20px;

 margin-left: 20px;

 text-align: center;

 background-image: url(images/cocktail.gif);
 background-repeat: repeat-x;

}

Adding the basic styles to the elixirs

The default padding on a <div> is 0 pixels, so
we’re going to add some padding to provide a bit

of space for the content. Notice that we’re not

adding any padding at the top because there’s
already plenty of room there, thanks to the
default margin on the <h2> heading (look back at

the last test drive and you’ll see there’s plenty
of

room above the <h2>). But we do need it on the

right, bottom, and left.

Use text-align on block elements to
align the text they contain. Here,
we’re going to center-align the text.

First, we’re going to change the width of the elixirs <div> to
make it narrower.

Next, we’ll knock out some of the styles you’re already familiar
with, like padding, text alignment, and the background image.

Then all we’ve got left are the text line heights and the heading
colors. You’re going to see that you need to upgrade your CSS
selector skills just a bit to get those changed.

Now we’re going to concentrate on some of the basic styles, like the
padding, the text alignment, and also getting that background image
of the cocktail glasses in the elixirs <div>. You’re already familiar
with how most of this works, so let’s take a quick look at the CSS:

And finally we’re specifying an image to use in the background, in this
case the cocktail image. We’re setting the background-repeat property
to repeat-x, which will tile the image only in the horizontal direction.

Remember, we’re going to apply all this style to
the elixirs <div> so that it only affects the <div>
and the elements it contains, not the entire page.

We’re adding some margin on the left to indent

the elixirs from the rest of the page a bit.

This is going to come in handy later…

We’re doing this step next.

432 Chapter 10

how text-align works

Wait just a sec…why does the
text-align property affect the

alignment of the images? Shouldn’t
it align only text? Seems like it

should be called something else if it
aligns images too.

Good point…it doesn’t seem right, does it? But the truth
is that text-align will align all the inline content in a block
element. So in this case, we’re setting the property on the
<div> block element, and all its inline content is nicely
centered as a result. Just remember that text-align,
despite its name, works on any kind of inline element.
One other thing to keep in mind: the text-align
property should be set on block elements only. It has no
effect if it’s used directly on inline elements (like).

Test driving the new styles
Now it’s time to add those new properties to your

“lounge.css” file and reload the page. Let’s check out
the changes: the headings, the images, and the text
are all centered in the <div> and have a little more
breathing room now that there’s some padding in
place. We’ve also got a little decoration at the top
with the tiled cocktail image.

We’ve got some
padding here, and
at the bottom
and left…

…and everything’s
centered nicely.

The tiled image looks
nice, and it only tiles
horizontally.

you are here 4 433

divs and spans

Good catch. All the text inside the <div>
element is in nested block elements, but it is
all aligned now. That’s because these block
elements inherit the text-align property
from the <div>. So here’s the difference:
rather than the <div> itself aligning the
text in the headings and the paragraphs
(which it won’t do because these are block
elements), the headings and paragraphs
are inheriting the text-align value of

“center”, and then aligning their own content
to center.

So what? Well, if you think about it, this
gives you a lot of leverage when you use a
<div>, because you can wrap a section of
content in a <div> and then apply styles
to the <div> rather than each individual
element. Of course, keep in mind that not
all properties are inherited by default, so
this won’t work for all properties.

That’s interesting
because I noticed the text inside the
<div> is all inside other block elements,

like <h2>, <h3>, and <p>. So, if text-align
is aligning inline elements in the <div> block
element, how is the text in these nested

block elements getting aligned?

434 Chapter 10

calculating box widths

So now that you understand widths, what’s the total width
of the elixirs box? To start with, we know the content area
is 200 pixels. We’ve also set some left and right padding
that affects the width, as well as a border that’s set to “thin”.
Just assume a thin border is 1 pixel thick, like it is on most
browsers. And what about margins? We set a left margin
value, but no right margin value, so the right margin is 0
pixels by default.

Here are all the properties that relate to width. Your job is to
figure out the total width of the elixirs <div>.

 border-width: thin;

 width: 200px;

 padding-right: 20px;
 padding-left: 20px;

 margin-left: 20px;

you are here 4 435

divs and spans

We’re close to having the elixirs done. What’s left?

We’re almost there…

Sounds pretty easy, right? After all, you’ve done
all this before. In fact, given that you know you
can just set styles on the <div> and they will be
inherited, you can take care of this real fast.

Frank: Yeah, this is interesting. The main elixirs heading, which is an <h2>,
has the aquamarine color because there is already an <h2> rule in the CSS.
But we need for that to be black. Then we’ve got the <h3>s in the elixirs,
which need to be red.

Jim: Yeah, no problem, we’ll just add a few more rules.

Frank: But wait a sec…if we change the <h2> rule, or add an <h3> rule,
then we’re going to change the heading colors on the entire page. We just
want these colors in the elixirs section.

Jim: Oh, good point. Hmmm…Well, we could use two classes.

Frank: That would work, although it’s a bit messy. Anytime you
add a new heading to the elixirs <div>, you’ll have to remember to
add it to the class.

Jim: Yeah, well, c’est la vie.

Frank: Actually Jim, before you use classes, go check out descendant
selectors. I think they’ll work better here.

Jim: Descendant selectors?

Frank: Right, they’re just a way of specifying a selector like “select an <h2>
element, but only if it’s inside an elixirs <div>.”

Joe: I’m not following.

Frank: Okay, let’s step through this…

We’ve almost got this done; we
just need to change the header
colors and also the line height.

JimFrank

We’re on the last step.

First, we’re going to change the width of the elixirs <div> to
make it narrower.

Next, we’ll knock out some of the styles you’re already familiar
with, like padding, text alignment, and the background image.

Then all we’ve got left are the text line heights and the heading
colors. You’re going to see that you need to upgrade your CSS
selector skills just a bit to get those changed.

436 Chapter 10

selecting only certain headings

What are we trying to do?
Let’s take a quick look at what we’re trying to do
to the heading colors.

Here’s just the main
heading elements in the
lounge HTML.

Right now, the CSS says to color <h1>
and <h2> element text aquamarine. So
all <h1> and <h2> elements are that
color, even in the elixirs <div>.

What we have now

What we want

h1, h2 {

 color: #007e7e;

}And here’s the rule specifying the <h1>
and <h2> color in the “lounge.css” file.

h1, h2 {

 color: #007e7e;

}

We want the <h1> and <h2> in
the main page to stay aquamarine.

And we want to change the <h2>
and <h3> elements in the elixirs
section to be black and red.

But if we change the existing rule for <h2>, we’ll affect
the font color of every <h2> in the main page. And if we
add a new rule for <h3>, then any <h3>s that get added
to the main page later will be red, which is not what we
want. Now, we could use a class like Jim suggested, but
we’re going to give Frank’s idea a try first…

html

body

h2h1 div id="elixirs"

h2 h3 h3h3

html

body

h2h1 div id="elixirs"

h2 h3 h3h3

you are here 4 437

divs and spans

What we need is a way to select descendants
What we’re really missing is a way to tell CSS that we want to only select
elements that descend from certain elements, which is kinda like specifying that you
only want your inheritance to go to the children of one daughter or son. Here’s
how you write a descendant selector.

div h2 {

 color: black;

}

Leave a space between
the parent name and
the descendant name.

Here’s the
parent element.

And here’s its
descendant.

Write the rest of
your rule just like
you always do.

This rule says to select
any <h2> that is a
descendant of a <div>.

Here’s what this rule
selects in the lounge.

Now the only problem with this rule is that if someone created another <div>
in the “lounge.html” file, she’d get black <h2> text, even if she didn’t want it.
But we’ve got an id on the elixirs <div>, so let’s use it to be more specific about
which descendants we want:

#elixirs h2 {

 color: black;

}

Now the parent
element is the
element with
the id elixirs.

And here’s its
descendant.

This rule says to select any <h2> that is a
descendant of an element with the id “elixirs”.

This rule selects the same element. But it’s more
specific, so if we added another <div> with an
<h2> to the page, that’s okay because this rule
selects only <h2>s in the elixirs <div>.

html

body

h2h1 div id="elixirs"

h2 h3 h3h3

html

body

h2h1 div id="elixirs"

h2 h3 h3h3

438 Chapter 10

more on selecting children

Your turn. Write the selector that selects only <h3> elements inside the elixirs <div>.
In your rule, set the color property to #d12c47. Also label the elements in the graph
below that are selected.

Q: Descendant usually means child, grandchild,
great-grandchild. Here, we’re just selecting the child
descendants, right?

A: That’s a really good point. The selector “#elixirs h2” means
ANY descendant of elixirs, so the <h2> could be a direct child of
the <div> or nested down inside a <blockquote> or another nested
<div> (making it a grandchild) and so on. So a descendant selector
selects any <h2> nested inside an element, no matter how deeply it
is nested.

Q: Well, is there a way to select a direct child?

A: Yes. For example, you could use “#elixirs > h2” to select <h2>
only if it is the direct child of an element with an id of “elixirs”.

Q: What if I need something more complex, like an <h2> that
is the child of a <blockquote> that is in elixirs?

A: It works the same way. Just use more descendants, like this:
#elixirs blockquote h2 {
 color: blue;
}
This selects any <h2> elements that descend from <blockquote>s
that descend from an element with an id of “elixirs”.

html

body

h2h1 div id="elixirs" div id="calendar"

h2 h3 h3h3 h2 h3h1

Write your CSS rule here.

you are here 4 439

divs and spans

Changing the color of the elixir headings
Now that you know about descendant selectors, let’s set the <h2> heading to
black and the <h3> headings to red in the elixirs. Here’s how you do that:

#elixirs h2 {
 color: black;
}

#elixirs h3 {
 color: #d12c47;
}

Here, we’re using the descendant
selectors to target just the <h2>
and <h3> elements in the elixirs <div>.
We’re setting <h2> to black, and <h3>
to a red color, using a hex code.

A quick test drive…
Go ahead and add these new properties to the bottom of your

“lounge.css” file, save, and reload “lounge.html”.

We’ve got black and red headings
in the elixirs section, and we
haven’t affected the aquamarine
color being used for <h2>
headings in the main page.

Now all we need to do is
fix the line height.

440 Chapter 10

another way to specify line height

Fixing the line height
Recall that in the last chapter, we made the line height of the text in
the lounge a little taller than normal. This looks great, but in the elixirs
we want our text to be a normal, single-spaced line height to match
the handout. Sounds easy enough, right? Just set the line-height
property on the <div> and everything will be fine, because line height
is inherited. The only problem is that the headings will also inherit the
line height, and we’ll end up with something like this.

If you set the line-height property on
the entire <div>, then it will be inherited
by all elements in the <div>, including the
headings. Notice that the line height in
the heading is too small and the two lines
are starting to run together.

#elixirs {
 line-height: 1em;
}

The reason that the line height for the elixirs heading is too
small is because every element in the elixirs <div> inherits
the line height of 1em, or “1 times the font size of the
elixirs element,” which in this case is “small”, or about 12
pixels (depending on your browser). Remember, the elixirs
<div> is inheriting its font size from the <body> element,
which we set to “small”.

What we really want is for all the elements in the elixirs
<div> to have a line height that’s based not on the font
size of the elixirs <div>, but rather the font size of each
element itself. We want the <h2> heading to have a
line height that is 1 times its font size (which is 120% of

“small”), and the <p> should also have a line height of 1
times its font size (which is “small”). How can you do this?
Well, the line-height property is a bit special because
you can use just a number instead of a relative measure—like
em or %—for it. When you use just the number 1, you’re
telling each element in the elixirs <div> to have a line
height of 1 times its own font size, rather than the font size
of the elixirs <div>. Give it a try; set the line height of the
elixirs <div> to 1, and you’ll see that it fixes the heading.

#elixirs {
 line-height: 1;
}

Here are the font sizes of the elements. We set body to “small”, so that’s inherited by elixirs.

The line-height of
<h2> is set to 1 times
the font size of
elixirs, which is “small”,
or about 12 pixels.

We want <h2> to
have a line-height
that is 1 times
its own font size;
that is, 14 pixels
(120% of small).

Add a line-height of 1
to the elixirs <div> to
change the line-height
of each element in it.

The font-size of the p element is “small” (p inherits
its font-size from the elixirs <div>), so it will have a
line-height of 12 pixels, which is what we want.

body size is "small"

div id="elixirs"
size is "small"

h2 is 120% of "small"

body line-height is
1.6 times "small"

div id="elixirs"
line-height is 1 times

"small", or about 12 pixels

h2 is 120% of "small"
line-height is 1 times
120% of "small", or

about 14 pixels

you are here 4 441

divs and spans

Look what you’ve accomplished…

Wow, that’s fantastic!
You were able to make the
elixirs section on the website

look like the handout, with just
a little CSS.

Take a look at the elixirs section now. You’ve
completely transformed it, and now it looks
just like the handout. And, other than adding a
<div> and an id attribute to your HTML, you
were able to do this with just a few CSS rules
and properties.

By now, you should be realizing just how
powerful CSS is, and how flexible your web
pages are when you separate your structure
(HTML) from your presentation (CSS). You can
give your HTML a whole new look, simply by
changing the CSS.

Remember, this is how the
elixirs section looked when
we started…

…and here’s
what it looks
like now.

442 Chapter 10

specifying properties with shorthand

It’s time to take a little shortcut
You’ve probably noticed that there are quite a few CSS properties that seem to
go together. For instance, padding-left, padding-right, padding-bottom,
and padding-top. Margin properties are the same way. How about
background-image, background-color, and background-repeat? Those all
set different property values on the background of an element. Have you also noticed
it gets a little tedious typing all those in? There are better things to spend your time
on than typing all this, right?

padding-top: 0px;
padding-right: 20px;
padding-bottom: 30px;
padding-left: 10px;

That’s a lot of typing just to
specify four numbers.

Well, here’s a special bonus for this chapter. You’re going to learn how to specify all
those values without risking carpal tunnel. Here’s how:

Here’s the old-school way of
specifying your padding.

padding-top: 0px;
padding-right: 20px;
padding-bottom: 30px;
padding-left: 10px;

padding: 0px 20px 30px 10px;

And here’s the new and improved
way to write them as a shorthand.

top right
bottom

left

You can use the same sort of shorthand with margins:

margin-top: 0px;
margin-right: 20px;
margin-bottom: 30px;
margin-left: 10px;

margin: 0px 20px 30px 10px;

top right
bottom

left
Just like padding, you can use
a shorthand to specify all your
margin values with one property.

If your padding or margins are the same value on all sides,
you can make the shorthand really short:

padding-top: 20px;
padding-right: 20px;
padding-bottom: 20px;
padding-left: 20px;

padding: 20px;

This says that the
 padding

should be 20 pixels on

every side of the
 box.

If all your padding values are the same,
then you can write it like this.

you are here 4 443

divs and spans

border-width: thin;
border-style: solid;
border-color: #007e7e;

border: thin solid #007e7e;
Rewrite border
properties as one
property. These can be
in any order you like.

But there’s more…
Here’s another common way to abbreviate margins (or padding):

margin-top: 0px;
margin-right: 20px;
margin-bottom: 0px;
margin-left: 20px;

margin: 0px 20px;

top and bottom

right and leftIf the top and bottom, as well as the right and left,
margins are the same, then you can use a shorthand.

And what about the border properties we mentioned?
You can use a shorthand for those too.

The border shorthand is even more flexible than margins or padding
because you can specify them in any order you like.

border: solid thin #007e7e;

border: #007e7e solid thin;

border: solid thin;

border: #007e7e solid;

border: solid;

These are all perfectly
valid border shorthands.

background-color: white;
background-image: url(images/cocktail.gif);
background-repeat: repeat-x;

You can also use shorthand for backgrounds:

…and don’t forget the shorthand for backgrounds

background: white url(images/cocktail.gif) repeat-x;

Like border, values can go in any order
in this shorthand. There are also a
few other values you can specify in the
shorthand, like background-position.

top and bottom
are the same.

right and left
are the same.

444 Chapter 10

shortcuts for fonts

And even more shorthands
No description of shorthands would be complete without mentioning font shorthands.
Check out all the properties we need for fonts: font-family, font-style,
font-weight, font-size, font-variant, and don’t forget line-height. Well,
there’s a shorthand that wraps all these into one. Here’s how it works:

font: font-style font-variant font-weight font-size/line-height font-family

These values are all optional. You can specify any combination of them, but they need to come
before the font-size property.

You must specify
font size.

The line-height
property is optional.
If you want to specify
one, just put a / right
after the font-size
property and add
your line height.

Use commas
between your
font-family
names.

Here are the properties that go into the
font shorthand. Ordering matters here
unless we say otherwise…

So let’s give this a try. Here are the font properties for the lounge body:

font-size: small;

font-family: Verdana, Helvetica, Arial, sans-serif;

line-height: 1.6em;

Now let’s map those to the shorthand:

font: font-style font-variant font-weight font-size/line-height font-family

We’re not using any of these, but that’s okay—they’re all optional.

And now let’s write the shorthand:

font: small/1.6em Verdana, Helvetica, Arial, sans-serif;

And here’s the shorthand version. Wow, that’s quite a
shorthand, huh? You’re going to be able to double your time
at the slopes (or on the beach) now.

Finally, you need to add
your font families. You only
need to specify one font,
but alternatives are highly
encouraged.

you are here 4 445

divs and spans

It’s time to put all your new knowledge to work. You’ll notice that at the bottom of the
lounge, there’s a small section with copyright information that acts as a footer for the
page. Add a <div> to make this into its own logical section. After you’ve done that,
style it with these properties:

Let’s make the text really small.
You know, FINE PRINT.

And let’s center the text.

We’re also setting the line-height to be
“normal”, which is a keyword you haven’t seen
yet. “Normal” allows the browser to pick an
appropriate size for the line height, which is
typically based on the font.

And let’s add some top margin to give the
footer a little breathing room.

And while you’re at it, have a look over the entire “lounge.css” file. Is there anywhere you
might want to simplify things with shorthands? If so, go ahead and make those changes.

Q: Should I always use shorthand?

A: Not necessarily. Some people find the long form more
readable. Shorthands do have the advantage of reducing the size
of your CSS files, and certainly they are more quickly entered
because they require less typing. However, when there is a
problem, they are a little more difficult to “debug” if you have
incorrect values or the wrong order. So, you should use whichever
form is more comfortable because they are both perfectly valid.

Q: Shorthands are more complex because I have to
remember the ordering and what is and isn’t optional. How do
I memorize it all?

A: Well, you’ll be surprised how quickly it becomes second
nature, but those of us in the “biz” have a little secret we like to
call a “reference manual.” Just pick one up, and should you need
to quickly look up property names or the syntax of a property,

To remember the ordering of the padding and margin shorthand values, think of a clock labeled with top, right, bottom, and left. Then, always go in a clockwise direction: top to right to bottom to left.

Make It Stick

margin: 0px 20px 30px 10px;

top right bottom
left

just grab your handy reference manual and look it up. We’re
particularly fond of the CSS Pocket Reference by Eric Meyer.
It’s tiny and makes a great reference.

font-size: 50%;
text-align: center;
line-height: normal;
margin-top: 30px;

446 Chapter 10

another lounge assignment

I saw the nice job you
did on the elixirs. Can you

give us a hand with the music
recommendations on the site?

We don’t need much, just
some simple styling.

The lounge’s
resident DJ

All the CD titles are
in an italic font style.

And all the artists
are in bold.

What do you think is the best way to style the CD and artists in the
“What’s playing at the Lounge” section?

you are here 4 447

divs and spans

Frank: Yeah, but that’s kind of like using a <blockquote> just to
indent text. What I mean is that we don’t really want to emphasize and
strongly emphasize the CD and artists. We just want italic and bold.
Plus, what if someone changes the style for and ? That
would show up on the CDs and artists too.

Jim: Well, I actually thought about that, but I couldn’t think of any
other way to do it. I mean, this is just text in the same list item. It’s not
like we have any way to style it.

Frank: What do you mean?

Jim: We can only style elements, and here we just have a bit of text,
like, “Music for Airports, Brian Eno”. We’d need an element around
each piece of text to be able to style them differently.

Frank: Oh, right, right. I see what you mean.

Jim: I suppose we could use something like:

 <div class="cd">Music for Airports</div>
 <div class="artist">Brian Eno</div>.

But that’s a block element, so that is going to cause linebreaks.

Frank: Ahhh, I think you’re on to something, Jim. There’s another
element like <div> that is for inline elements. It’s called a . That
could work out perfectly.

Jim: I’m game. How does it work?

Frank: Well, a gives you a way to create a grouping of inline
characters and elements. Here, let’s just give it a try…

I was thinking we could
just wrap and

elements around the CDs and
artists. On most browsers, that’s

going to give us italic and bold.

Jim Frank

448 Chapter 10

how to use spans

Adding span s in three easy steps
 elements give you a way to logically separate inline content in the same
way that <div>s allow you to create logical separation for block-level content. To
see how this works, we’re going to style the music recommendations by first adding
 elements around the CDs and artists, and then we’ll write two CSS rules to
style the s. Here’s exactly what you’re going to do:

You’re going to nest the CDs and artists in separate elements.

You’re going to add one to the “cd” class and the other to
the “artist” class.

You’re going to create a rule to style the “cd” class with italic, and
the “artist” class with bold.

Steps one and two: Adding the span s
Open your “lounge.html” file and locate the “Who’s playing at the Lounge”
heading. Just below that, you’ll see the unordered list of recommendations.
Here’s what it looks like:

Buddha Bar, Claude Challe
When It Falls, Zero 7
Earth 7, L.T.J. Bukem
Le Roi Est Mort, Vive Le Roi!, Enigma
Music for Airports, Brian Eno

Buddha Bar, Claude Challe
When It Falls, Zero 7
Earth 7, L.T.J. Bukem
Le Roi Est Mort, Vive Le Roi!, Enigma
Music for Airports, Brian Eno

Each list item consists of a CD title, a
comma, and then the music artist.

Let’s try adding s to the first CD and artist:

Just add a opening tag along with
the class attribute and a value of “cd”.

Next, add a closing tag
after the CD title.

Do the same for the artist. Nest it in a element, only this time put the in the “artist” class.

2

1

3

you are here 4 449

divs and spans

Step three: Styling the span s

Nice job. This next
one’s for you.

Before we move on, save the file and reload it in your browser. Like a <div>, by default a
 has no effect on style, so you should see no changes.

Now let’s add some style. Add these two rules to the bottom of your “lounge.css” file:

.cd {
 font-style: italic;
}

.artist {
 font-weight: bold;
}

We’re going to add a rule for each of
the new classes, cd and artist.

For CDs, we’ll make
the font style italic.

And for artists we’ll
set the font-weight
to bold.

Test driving the spans
That’s it. Save and reload. Here’s what you’ll see:

Now the
first music
recommendation
has the correct
styling.

450 Chapter 10

more on span

Q: When do I use a rather
than another inline element like or
?

A: As always, you want to mark up your
content with the element that most closely
matches the meaning of your content. So,
if you are emphasizing words, use ;
if you’re trying to make a big point, use
. But if what you really want is to
change the style of certain words—say,
the names of albums or music artists on a
fan site web page—then you should use a
 and put your elements into
appropriate classes to group them and style
them.

Q: Can I set properties like width on
 elements? Actually, what about
inline elements in general?

A: You can set the width of inline
elements like , , and ,
but you won’t notice any effect until you
position them (which you’ll learn how to do in
the next chapter). You can also add margin
and padding to these elements, as well as
a border. Margins and padding on inline
elements work a little differently from block
elements—if you add a margin on all sides
of an inline element, you’ll only see space
added to the left and right. You can add
padding to the top and bottom of an inline
element, but the padding doesn’t affect the
spacing of the other inline elements around
it, so the padding will overlap other inline
elements.

Images are a little different from other inline
elements. The width, padding, and margin
properties all behave more like they do for
a block element. Remember from Chapter
5: if you set the width of an image using
either the width attribute in the
element or the width property in CSS, the
browser scales the image to fit the width
you specify. This can sometimes be handy if
you can’t edit the image yourself to change
the dimensions, and you want the image to
appear bigger or smaller on the page. But
remember, if you rely on the browser to scale
your image, you may be downloading more
data than you need (if the image is larger
than you need).

You need to finish the job. Add elements to the rest
of the music recommendations and test your page. You’ll
find the solution in the back of the chapter.

Buddha Bar, Claude Challe
When It Falls, Zero 7
Earth 7, L.T.J. Bukem
Le Roi Est Mort, Vive Le Roi!, Enigma
Music for Airports, Brian Eno

you are here 4 451

divs and spans

Think about the <a> element.
Is there something about its
style that seems different from
other elements?

Hey, I know you think you’re about done,
but you forgot to style the links. They’re
still that default blue color, which kinda

clashes with our site.

452 Chapter 10

how to style links

The a element and its multiple personalities
Have you noticed that links act a little differently when it comes
to style? Links are chameleons of the element world because,
depending on the circumstance, they can change their style at a
moment’s notice. Let’s take a closer look:

Here’s a link you’ve never clicked on before. This is called an “unvisited link,” or just ‘link,” and it’s blue by default.

And if you hold your mouse over a link without
clicking, this is called “hovering.” On some
browsers you’ll see a tool tip that displays the
text of the “title” attribute. And if you pay
close attention, on some web pages, you’ll see a
different style as you hover.

And here’s a link you
have clicked on before.
We call these “visited
links.” Usually, visited
links are displayed
in a different color
than unvisited links so
that you can tell the
difference. In most
browsers, visited links
are purple by default.

Unlike other elements, the style of an <a> element changes depending
on its state. If the link has never been clicked on, it has one style, and
if it has been clicked on, another. And if you hover over a link, it can
have yet another style. Perhaps there’s more to styling <a> elements
than meets the eye? You betcha…let’s take a look.

you are here 4 453

divs and spans

How can you style elements
based on their state?
A link can be in a few states: it can be unvisited, visited, or
in the hover state (and a couple of other states too). So, how
do you take advantage of all those states? For instance, it
would be nice to be able to specify what the visited and
unvisited colors are. Or maybe highlight the link when the
user is hovering over it. If only there were a way…

Well, of course there is, but if we told you it involves using
pseudo-classes you’d probably just decide you’ve read enough
for the night, and close the book. Right? But hold on!
Pretend we never said the word pseudo-class, and let’s just
look at how you can style your links:

a:link {
 color: green;
}

a:visited {
 color: red;
}

a:hover {
 color: yellow;
}

This selector is applied
to links when they are
in an unvisited state.

And this selector is
applied to links when
they are visited.

And this selector
is applied when you
hover over a link.

Add these rules to the bottom of your “lounge.css”
file and then save and reload “lounge.html”. Play
around with the links to see them in each state.
Note that you might have to clear your browser
history to see the unvisited color (green).

Q: What happens if I just style the <a>
element like a normal element? Like:
 a { color: red; }

A: You certainly can do that, but then your links
will look the same in all states, which makes your
links less user-friendly because you can’t tell which
ones you’ve visited and which ones you haven’t.

Q: What are the other link states you
mentioned?

A: There are two others: focus and active. The
focus state occurs when the browser focuses on
your link. What does that mean? Some browsers
allow you to press your Tab key to rotate through all
the links on your page. When the browser comes to
a link, that link has the “focus.” Setting a value for
the focus pseudo-class is helpful for accessibility
because those who need to use a keyboard to
access a link (as opposed to a mouse) will know
when they've got the right link selected. The active
state occurs when the user first clicks on a link.

Q: Can’t my links be in multiple states at
the same time? For instance, my link could be
visited, have the mouse hovering over it, and
the user could be actively clicking on it all at
once.

A: They sure can. You determine which style is
applied by the ordering of your rules. So, the right
ordering is generally considered to be: link, visited,
hover, focus, and then active. If you use that
ordering, you’ll get the results you expect.

Q: Okay, I give. What’s a pseudo-class?

A: Only one of the most confusing words in
the CSS language. But as you’ve seen, styling
links is pretty straightforward. So, let’s talk about
pseudo-classes…

Notice we have the element <a>, followed by a : (colon),

followed by the state we want to select. Make sure you don’t

have any spaces in these selectors (e.g., a : link won’t work!)

454 Chapter 10

more on pseudo-classes

Head First: Welcome, Pseudo-class. It’s a
pleasure to have you here. I must confess that
when they first asked me to do this interview, I
drew a blank. Pseudo-class? The only thing that
came to mind was that ’80s Phil Collins song.

Pseudo-class: Uh, that would be Sussudio.
My name is Pseudo.

Head First: Oops. Honest mistake. Maybe we
could start there. Can you tell us a little about
where Pseudo came from?

Pseudo-class: Pseudo usually means
something that looks like the real thing, but isn’t.

Head First: And the last name? Class?

Pseudo-class: Everyone knows what a CSS
class is. It’s a grouping you create to place
elements in so you can style them together. Put

“pseudo” and “class” together and you have a
pseudo-class: it acts like a class, but it isn’t a real
class.

Head First: What’s not real about it if it acts
like a class?

Pseudo-class: Okay, open up an HTML file
and look for the class :visited, or :link, or
:hover. Let me know when you find one.

Head First: I don’t see any.

Pseudo-class: And yet, a:link,
a:visited, and even a:hover all allow you
to specify style, just like they were classes. So,
those are pseudo-classes. In other words, you
can style pseudo-classes, but no one ever types
them into their HTML.

Head First: Well then, how do they work?

Pseudo-class: You can thank your browser
for that. The browser goes through and adds all
your <a> elements to the right pseudo-classes.
If a link’s been visited, no problem; it goes
into the :visited pseudo-class. Is the user
hovering over a link? No problem, the browser
throws it in the :hover pseudo-class. Oh, now
the user isn’t hovering? The browser yanks it
out of the “hover” pseudo-class.

Head First: Wow, I never knew. So there are
all these classes out there that the browser is
adding and removing elements from behind the
scenes.

Pseudo-class: That’s right, and it’s damned
important to know about; otherwise, how would
you give your links style that adapted to what
state the link was in?

Head First: So, Pseudo, do you just do links?

Pseudo-class: No, I do other elements too.
Modern browsers already support pseudo-
classes like :hover on other types of elements.
And there are some other pseudo-classes, too.
For instance, the pseudo-class :first-child
is assigned to the first child of any element, like
the first paragraph in a <blockquote>. And
you can even select the last paragraph of a
<blockquote> with the :last-child pseudo-
class. I’m quite versatile, really.

Head First: Well, I’ve certainly learned
something in this interview. Who knew that
song was actually called “Sussudio”?! Thanks
for being here, Pseudo-class.

The Pseudo-class Exposed
This week’s interview:
Getting to know the pseudo-class.

you are here 4 455

divs and spans

Putting those pseudo-classes to work

#elixirs a:link {
 color: #007e7e;
}

#elixirs a:visited {
 color: #333333;
}

#elixirs a:hover {
 background: #f88396;
 color: #0d5353;
}

Okay, let’s be honest. You’ve probably just learned the most important thing in this
book: pseudo-classes. Why? No, no, not because they allow you to style elements
based on various “classes” your browser decides they belong to, like :link or
:first-child. And, no, not because they give you really powerful ways to style
elements based on things that happen while your visitors are using your page, like
:hover. It’s because the next time you’re in that design meeting and you start talking
about pseudo-classes with a real understanding, you’re going to move to the head of the
class. We’re talking promotions and bonuses…at a minimum, the awe and respect of
your fellow web buddies.

So, let’s put those pseudo-classes to good use. You’ve already added some pseudo-class
rules to your “lounge.css” and they had a dramatic impact on the look of the links, but
they’re probably not quite right for the lounge. So let’s rework the style a little:

Okay, big change here. We’re using a descendant selector

combined with a pseudo-class. The first selector says

to select any unvisited <a> element that is nested in an

element with the id “elixirs”. So we’re styling JUST the

links inside elixirs.

On these two, we’re setting the color.
For unvisited links, a nice aquamarine…

…and for visited links we’re
using a dark gray.

Now for the really interesting rule. When
the user is hovering over the link, we’re
changing the background to red. This
makes the link loo highlighted when you
pass the mouse over it. Give it a try!

Open up your “lounge.css” and rework your a:link, a:visited, and a:hover
rules to use the new descendant selector and the new style definitions.
Save, reload, and turn the page.

456 Chapter 10

using pseudo-classes for links

Test drive the links

Your job is to give the “detailed directions” link in the lounge some style. Just like the
elixirs link, we want all unvisited links to be aquamarine, and all visited links to be gray.
However, we don’t want the other links in the lounge to have any hover style…that’s
unique to the elixirs. So, how would you do it? Fill in the blanks to give the “detailed
directions” link, and any other links you might add to the lounge later, this style. Check
your answer in the back of the chapter and then make the changes in your lounge files.

 { : #007e7e; }
 { : #333333; }

When you reload, you should see some new
style in the elixirs section. Keep in mind, to see
the unvisited links you may have to clear your
browser’s history; otherwise, the browser will
know you’ve visited these links before.

Now we’ve got green unvisited
links, gray visited links, and a
very cool red highlight when
you hover over the link.

you are here 4 457

divs and spans

Isn’t it about time we talk about the “cascade”?
Well, well, we’re quite far into this book (457 pages to be exact) and we still haven’t
told you what the “Cascade” in Cascading Style Sheets is all about. Truth be told, you
have to know a lot about CSS to fully understand the cascade. But guess what, you’re
almost there, so wait no more.

Here’s just one last piece of information you need to understand the cascade. You
already know about using multiple stylesheets to either better organize your styles
or to support different types of devices. But there are actually some other stylesheets
hanging around when your users visit your pages. Let’s take a look:

The author
(that’s you!)

The reader
(your users)

The browser

First, there are all
the stylesheets you’ve
written for your page.

But some browsers also allow users
to create their own styles for
HTML elements. If your stylesheet
doesn’t define these styles, the
user’s stylesheet is used instead.

And finally, you already
know that the browser
itself maintains a set of
default styles that are
used if you don’t define
the styles for an element.
These are also the styles
that are used if you don’t
have any author or reader
stylesheets.

Note that there is a way for a reader
to actually override your styles. To do
that he puts “!important” at the end
of a property declaration.

When the browser needs to determine
which style to apply to an element, it uses
all these stylesheets. Priority is given first
to the author’s styles (that is, your styles),
then to the reader’s styles, and then
finally to the browser’s default styles.

458 Chapter 10

what the cascade does

So, to review, as the page authors, we
can use multiple stylesheets with our HTML.
And the user might also supply his own styles,
and then the browser has its default styles,
too. And on top of all that, we might have
multiple selectors that apply to the same

element. How do we figure out which styles
an element gets?

That’s actually another way of asking what
cascade does. The cascade is the way the
browser decides, given a bunch of styles
in a bunch of stylesheets, which style is
going to be used. To answer that question,
we need to bring everything together—all
the various stylesheets hanging around,
the rules, and the individual property
declarations in those rules.

In the next two pages, we’re going to step
through the nitty-gritty details of how all
this works. The details involve a lot of
sorting and various details of determining
which rules are the most specific with
respect to an element. But here’s the payoff:
after going through the next two pages,
you’ll be able to get to the bottom of any
styles that don’t seem to be applied in the
way you expect, and further, you’re going
to understand more about the cascade than
99% of web page developers out there
(we’re not kidding).

you are here 4 459

divs and spans

The cascade
For this exercise, you need to “be the browser.” Let’s say you’ve got an <h1>
element on a page and you want to know the font-size property for it. Here’s
how you do it:

Gather all your stylesheets together.
For this step you need all the stylesheets: the stylesheets the web page
author has written, any stylesheets that the reader has added to the mix,
and the browser’s default styles. (Remember, you’re the browser now, so
you have access to all this stuff !)

Step one:

Find all the declarations that match.
We’re looking specifically for the font-size property, so look at all the
declarations for font-size that have a selector that could possibly select the
<h1> element. Go through all the stylesheets and pull out any rules that match
<h1> and also have a font-size property.

Step two:

Now take all your matches, and sort them.
Now that you’ve got all the matching rules together, sort them in the order of
author, reader, browser. In other words, if you wrote them as the author of the
page, then they are more important than if the reader wrote them. And, in
turn, the reader’s styles are more important than the browser’s default styles.

Step three:
Remember we
mentioned that the
reader could put
!important on his CSS
properties, and if
he does that, those
properties come first
when you sort.

Now sort all the declarations by how specific they are.
Remember, we talked about this a little, way back in Chapter 7. You can
intuitively think about a rule being more specific if it more accurately selects
an element; for instance, the descendant selector “blockquote h1” is more
specific than just the “h1” selector because it only selects <h1>s inside of
<blockquote>s. But there is a little recipe you can follow to calculate exactly
how specific a selector is, and we’ll do that on the next page.

Step four:

Finally, sort any conflicting rules in the order they appear in their
individual stylesheets.
Now you just need to take the list, and order any conflicting rules so that the ones
appearing later (closer to the bottom) of their respective stylesheets are more important.
That way, if you put a new rule in your stylesheet, it can override any rules before it.

Step five:

That’s it! The first rule in the sorted list is the winner, and its font-size property is
the one to use. Now let’s see how you determine how specific a selector is.

460 Chapter 10

calculating specificity

Welcome to the “What’s my specificity?” game
To calculate the specificity, you start with a set of three numbers, like this:

0 0 0

Does the selector have
any element names?
One point for each.

Does the selector
have any classes
or pseudo-classes?
One point each.

Does the selector
have any ids? One
point each.

0 0 0

And then we just tally up various things from the selector, like this:

For instance, the selector “h1” has one element in it, so you get:

0 0 1
As another example, the selector “h1.blue” has one element and
one class, so you’d get:

0 1 1

Both “h1” and “h1.blue” have one
element, so they both get a 1 in
the rightmost number column.

Try your hand at calculating the specificity of these selectors using the rules above:

h1.greentea

p img

a:link

ol li p

.green

#elixirs h1

em

span.cd

#sidebar

After you’ve tallied up all the ids, classes, and elements, the bigger the specificity
number, the more specific the rule. So, since “h1.blue” has a specificity of 11, it is
more specific than “h1”, which has a specificity of 1.

Read this as the
number one.

Read this as the
number eleven.

“h1.blue” also has one class, so it gets
a 1 in the middle number column.

Neither has ids in its selector,
so they both get a 0 in the
left number column

you are here 4 461

divs and spans

Q: What makes a specificity number
bigger than another?

A: Just read them like real numbers: 100
(one hundred) is bigger than 010 (ten) which
is bigger than 001 (one), and so on.

Q: What about a rule like “h1, h2”;
what is its specificity?

A: Think of that as two separate rules:
an “h1” rule, which has a specificity of “001”
and an “h2” rule that also has a specificity
of “001”.

Q: Can you say more about the
!important thing?

A: The reader can override a style by
putting an “!important” on the end of his
property declarations like this:
 h1 {
 font-size: 200% !important;
 }
and this will override any author styles.

Q: I can’t get the reader’s stylesheet,
so how can I ever figure out the way the
cascade works?

A: You can’t, but look at it this way: if
the reader overrides your styles, then that
is really beyond your control. So just make
your pages look like you want them to using
your styles. If the reader chooses to override
them, then he’ll get what he asks for (for
better or for worse).

Putting it all together
Woo hoo! It’s time for an example. Say you want to know the color
property for this <h1> element:

<h1 class="blueberry">Blueberry Bliss Elixir</h1>

Let’s take this through all the cascade steps:

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1 {
 color: #efefef;
}

h1.blueberry {
 color: blue;
}

Gather all your stylesheets together.
Step one:

Remember, you’re
the browser, because
you’re trying to
figure out how to
display this <h1>
element.

That’s you (for now).

Usually, you’re the author (the person writing the CSS). But right now, you’re the browser. The person using the browserThe author The reader

The browser

462 Chapter 10

using the cascade

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1 {
 color: #efefef;
}

h1.blueberry {
 color: blue;
}

Find all the declarations that match.
Step two:

Now take all your matches, and sort them by
author, reader, browser.

Step three:

Now sort the declarations by how specific they are. To do that, we need to
first calculate each specificity score, and then reorder the rules.

Step four:

Here are all the rules that
could possibly match the <h1>
element and that contain
the color property.

Reader

Author

Browser

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1 {
 color: #efefef;
}

h1.blueberry {
 color: blue;
}

Reader

Author

Browser

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1 {
 color: #efefef;
}

h1.blueberry {
 color: blue;
}

Here we’ve just
reordered the
rules by author,
then reader, and
then browser.

0 0 1

0 1 1

0 0 2

0 0 1
h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1.blueberry {
 color: blue;
}

h1 {
 color: #efefef;
}

0 1 1

0 0 1

0 0 2

0 0 1

The rule with
the blueberry
class moves
to the top
because it has
the highest
specificity.

Notice that we only sort within the author,
reader, and browser categories. We don’t re-sort
the entire list, or else the “body h1” rule would
move above the “h1” rule set by the author.

you are here 4 463

divs and spans

Step five:

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1.blueberry {
 color: blue;
}

h1 {
 color: #efefef;
}

We’re okay here, because we don’t have
any conflicting rules at this point. The
blueberry, with a score of 11, is the clear
winner. If there had been two rules with
a score of 011, then the rule appearing
latest would be the winner.

Finally, sort any conflicting rules in the order
that they appear in their individual stylesheets.

Q: So, one more time: I get that the lower in the CSS file, the
higher the precedence, but how does having multiple links to
stylesheets in my HTML work?

A: It’s always top to bottom, whether it is in the same CSS file or
not. Just pretend that you inserted the CSS all together right into your
file in the order the files are linked. That’s the order that counts.

Q: So when you sort for specificity, you don’t re-sort
everything?

A: No. Think of each time you sort as refining what you’ve done
before. So first you sort for author, reader, browser. Then, within each
of those sortings, you sort for specificity. And then, for any elements
that have the same specificity, you sort again based on the ordering
in the stylesheets.

Q: Do readers really make their own stylesheets?

A: By and large, no. But there are cases where people with visual
impairments do, and of course you’ve always got the crowd that just
has to tinker with everything. But since each reader is controlling only
how she sees things, it really shouldn’t factor into your designs.

Q: How much of this do I really need to remember?

A: You’re going to develop some intuition for how all these
stylesheets fit together, and on a day-to-day basis that intuition will
get you a long way. Every once in a while, though, you’ll see a style
popping up in your pages that just boggles your mind, and that’s
when you fall back on your training. You’ll be able to work through
the cascade, and before you know it, you’ll know exactly what’s
happening in your page.

We have a winner…
After sweating through the first choice of elements, the
sorting, more sorting, and being judged on specificity,
the “h1.blueberry” rule has risen to the top. So the color
property in the <h1> element will be blue.

Author

Reader

Browser

464 Chapter 10

when the cascade doesn’t provide a value

Ah, good question. We actually talked about this a little in
Chapter 7. If you don’t find a match for the property in
any rules in the cascade, then you try to use inheritance.
Remember that not all properties are inherited, like
border properties, for instance. But for the properties that
are inherited (like color, font-family, line-height,
and so on), the browser looks at the ancestors of the
element, starting with its parent, and tries to find a value
for the property. If it does, there’s your property value.

Then the only thing left to do is fall back
on the default values that are set in the
browser’s stylesheets, and all browsers
should have default styles for every element.

So, what happens if, after all
this, I still don’t have any rules

with a property declaration for
the property value I’m trying to

figure out?

Got it. Hey, but what if the
property isn’t inherited or
I can’t find a value in the

ancestor’s rules? Then what?

Oh, and why
is this called the

“cascade” anyway?

The name “cascade” was chosen because of the
way that styles coming from multiple stylesheets can
all “cascade” down into the page, with the most specific
styling being applied to each element. (If that doesn’t clear
things right up for you about why it’s called cascade, don’t
feel bad. It didn’t make it any clearer for us, either. Just
call it “CSS” and move on.)

you are here 4 465

divs and spans

This is a special brain power—so special that we’re going
to let you think about it between chapters. Here’s what
you need to do:

Open the file “lounge.css”.4

Locate the “#elixirs” rule.5

Add this declaration at the bottom of the rule:6

Save your file, and reload the page in your browser.7

float: right;

What changed? What do you think this property does?

Open the file “lounge.html” and locate the elixirs <div>.1

Move the entire elixirs <div> section to the top of the
file so it’s just below the paragraph that contains the
lounge logo.

2

Save and reload your page. What changed?3

STOP! Do this exercise before
going on to the next chapter!

466 Chapter 10

review of divs, spans, and pseudo-classes

 � <div> elements are used to group related elements
together into logical sections.

 � Creating logical sections can help you identify the main
content areas, header, and footer of your page.

 � You can use <div> elements to group elements
together that need a common style.

 � Use nested <div> elements to add further structure to
your files for clarity or styling. But don’t add structure
unless you really need it.

 � Once you have grouped together sections of content
with <div> elements, you can style the <div>s just like
you would any other block element. For example, you
can add a border around a group of elements using
the border property on the <div> they are nested in.

 � The width property sets the width of the content area
of an element.

 � The total width of an element is the width of the
content area, plus the width of any padding, border,
and margins you add.

 � Once you set the width of an element, it no longer
expands to fit the entire width of the browser window.

 � Text-align is a property for block elements that aligns
all inline content in the block element, to the center, left
or right. It is inherited by any nested block elements.

 � You can use descendant selectors to select elements
nested within other elements. For instance, the
descendant selector
 div h2 {...}
selects all <h2>s nested in <div> elements (including
children, grandchildren, etc.).

 � You can use shortcuts for related properties. For
instance, padding-top, padding-right, padding-bottom,
and padding-left are all related to padding, and can be
specified with one shortcut rule, padding.

 � Padding, margin, border, background, and font
properties can all be specified with shortcuts.

 � The inline element is similar to the <div>
element: it is used to group together related inline
elements and text.

 � Just like with <div>, you can add elements to
classes (or give elements unique ids) to style
them.

 � The <a> element is an example of an element with
different states. The main <a> element states are
unvisited, visited, and hover.

 � You can style each of these states separately with
pseudo-classes. The pseudo-classes used most often
with the <a> element are :link, for unvisited links;
:visited, for visited links; and :hover, for the hover state.

 � Pseudo-classes can be used with other elements too,
not just <a>.

 � Additional pseudo-classes are the :hover, :active,
:focus, :first-child, and last-child pseudo-classes,
among others.

HTMLcross on Vacation
Since you’ve got a Super Brain Power to work on, we

gave the HTMLcross a vacation in this chapter. Don’t

worry; he’ll be back in the next one.

you are here 4 467

divs and spans

#elixirs h3 {
 color: #d 2c47;
}

Your turn. Write the selector that selects only <h3> elements inside the elixirs
<div>. In your rule, set the color property to #d12c47. Also label the elements
in the graph below that are selected. Here’s the solution.

20 + 20 + 200 + + + 0 + 20 = 262

lef
t p

ad
din

g

rig
ht

 pa
dd

ing

con
te

nt
 ar

ea

lef
t b

ord
er

rig
ht

 bo
rd

er

rig
ht

 m
arg

in

lef
t m

arg
in

Here’s a box that has all the widths labeled. Your job was to
figure out the width of an entire box. Here’s the solution.

30
 pi

xe
ls

2
pix

els
5 p

ixe
ls

10
 pi

xe
ls

20
 pi

xe
ls

2
pix

els200 pixels30 + 2 + 5 + 200 + 10 + 2 + 20 = 269 pixels

So now that you understand widths, what’s the total width of the elixirs box? To start with,
we know the content area is 200 pixels. We’ve also set some left and right padding that
affects the width, as well as a border that’s set to “thin”. Just assume a thin border is 1 pixel
thick, like it is on most browsers. And what about margins? We set a left margin value, but
no right margin value, so the right margin is 0 pixels by default.

Your job was to figure out the total width of the elixirs <div>. Here’s the solution.

html

body

h2h1 div id="elixirs" div id="calendar"

h2 h3 h3h3 h2 h3h1

Here’s the rule. We select any <h3>
descendant of an element with the id elixirs.
And here’s what the graph looks like.

468 Chapter 10

exercise solutions

<div id="footer">

 <p>

 © 2012, Head First Lounge

 All trademarks and registered trademarks appearing on

 this site are the property of their respective owners.

 </p>

</div>

Place <div> tags
around the copyright
information.

And give it an id named “footer”.

#footer {
 font-size: 50%;
 text-align: center;
 line-height: normal;
 margin-top: 30px;
}

And here’s the CSS for the footer.

It’s time to put all your new knowledge to work. You’ll notice that at the bottom of the
lounge, there’s a small section with copyright information that acts as a footer for the
page. Add a <div> to make this into its own logical section. After you’ve done that,
style it with these properties:

Let’s make the text really small.
You know, FINE PRINT.

And let’s center the text.

We’re also setting the line-height
to be “normal”.

And let’s add some top margin to give the
footer a little breathing room.

font-size: 50%;
text-align: center;
line-height: normal;
margin-top: 30px;

An even better solution would be to change
<p> to <small>, which is an element designed
specifically for “small print.” Try it!

you are here 4 469

divs and spans

Your job was to finish adding the elements to the rest of the music
recommendations and test your page. Here’s the solution:

Buddha Bar,

 Claude Challe

When It Falls,

 Zero 7

Earth 7,

 L.T.J. Bukem

Le Roi Est Mort, Vive Le Roi!,

 Enigma

Music for Airports

 Brian Eno

470 Chapter 10

exercise solutions

 { : #007e7e; }
 { : #333333; }

a:link
a:visited

color
color

Try your hand at calculating the specificity of these selectors using
the cascade rules. Here’s the solution.

0 1 1
0 0 2

0 1 1

0 0 3
0 1 0

1 0 1

0 0 1
0 1 1

1 0 0

Your job is to give the “detailed directions” link in the lounge some style. Just like the
elixirs link, we want all unvisited links to be aquamarine, and all visited links to be gray.
However, we don’t want the other links in the lounge to have any hover style…that’s
unique to the elixirs. So, how would you do it? Fill in the blanks to give the “detailed
directions” link, and any other links you might add to the lounge later, this style. Here’s
the solution.

h1.greentea

p img

a:link

ol li p

.green

#elixirs h1

em

span.cd

#sidebar

this is a new chapter 471

It’s time to teach your HTML elements new tricks. We’re not

going to let those HTML elements just sit there anymore—it’s about time they get

up and help us create some pages with real layouts. How? Well, you’ve got a good

feel for the <div> and structural elements and you know all about how the

box model works, right? So, now it’s time to use all that knowledge to craft some real

designs. No, we’re not just talking about more background and font colors—we’re

talking about full-blown professional designs using multicolumn layouts. This is the

chapter where everything you’ve learned comes together.

You can bet all my divs and
spans are in the right place.

layout and positioning11

Arranging Elements

472 Chapter 11

examining a two-column page

Did you do the Super Brain Power?
If you didn’t do the Super Brain Power at
the end of the last chapter, then march right back
there and do it. It’s required.

Okay, now that we have that out of the way, at the
end of the last chapter, we left you with a bit of
a cliff-hanger. We asked you to move the elixirs
<div> up under the logo, and then add one little
property to the elixirs rule in your CSS, like this:

float: right;

And, wow, what a difference one property can
make! All of a sudden, the page has gone from a
fairly ordinary-looking web page to a great-looking
web page with two columns. It’s immediately more
readable and pleasant to the eye.

So what’s the magic? How did this seemingly
innocent little property produce such big effects?
And can we use this property to do even more
interesting things with our pages? Well, of course,
but first, you’re going to need to learn how a
browser lays out elements on a page. Once you
know that, we can talk about all kinds of ways you
can alter how it does that layout, and also how you
can start to position your elements on the page.

Here’s the good news: you already know about
block elements and inline elements, and you
even know about the box model. These are the
real foundations of how the browser puts a page
together. Now all you need to know is exactly how
the browser takes all the elements in a page and
decides where they go.

you are here 4 473

layout and positioning

The Flow is what gives a CSS master his power. It’s an
energy field created by all living things. It surrounds us
and penetrates us. It binds the galaxy together…oh, sorry.

Flow is actually what the browser uses to lay out a page
of HTML elements. The browser starts at the top of any
HTML file and follows the flow of elements from top to
bottom, displaying each element it encounters. And, just
considering the block elements for a moment, it puts a
linebreak between each one. So the first element in a
document is displayed first, then a linebreak, followed by
the second element, then a linebreak, and so on, from the
top of your file to the bottom. That’s flow.

Use the Flow, Luke

And here’s the HTML flowed
onto a page.

<html>
 <head>...</head>
 <body>
 <h1>...</h1>
 <h2>...</h2>
 <p>...</p>
 <h2>...</h2>
 <p>...</p>
 <p>...</p>
 <p>...</p>
 </body>
</html>

Here’s a little “abbreviated” HTML.

Each block element is
taken in the order it
appears in the markup,
and placed on the page.

Each new block
element causes a
linebreak.

Notice that elements
take up the full width
of the page.

p

p

p

h1

h2

h2

p

474 Chapter 11

playing with flow

p pp
pp pp

Here’s your page. Flow
the block elements in
“lounge.html” here.

Here are all the block
elements you’ll need to
complete the job.

h1

div
div

h2

BE the Browser
Open your “lounge.html” file and locate
all the block elements. Flow each one on
to the page to the left. Just concentrate

on the block elements
nested directly inside the
body element. You can also
ignore the “float” property
in your CSS because you

don’t know what it does yet. Check your
answer before moving on.

ul

you are here 4 475

layout and positioning

p

p

What about inline elements?
So you know that block elements flow top to
bottom, with a linebreak in between each element.
Easy enough. What about the inline elements?

Inline elements are flowed next to each other,
horizontally, from top left to bottom right. Here’s
how that works.

If we take the inline
content of this <p> element
and flow it onto the page,
we start at the top left.

<p>
Join us any evening for
these and all our other wonderful
<a href="beverages/elixir.
html" title="Head First Lounge
Elixirs">elixirs.
</p>

Here’s another little
snippet of HTML.

The inline elements are laid next to one
another horizontally, as long as there is
room on the right to place them.

Here, there’s room to fit all the inline
elements horizontally. Notice that text
is a special case of an inline element. The
browser breaks it into inline elements that
are the right size to fit the space.So what if we make the browser window

a little thinner, or we reduce the size of
the content area with the width property?
Then there’s less room to place the inline
elements in. Let’s see how this works.

Now the content has been flowed left to
right until there’s no more room, and then
the content is placed on the next line. Notice
the browser had to break the text up a little
differently to make it fit nicely.

And if we make the content area even thinner,
look what happens. The browser uses as many lines
as necessary to flow the content into the space.

p

text textem a

text

text

text

text

text

text

text

em

em

a

a

476 Chapter 11

how flow works

img img img

spanem em

h1

p

p

p

p

img

h2

h2

text

text

text

text

span

text
text

text

Now that you know how block and inline elements are
flowed, let’s put them together. We’ll use a typical page
with headings, paragraphs, and a few inline elements like
spans, some emphasis elements, and even images. And we
can’t forget inline text.

How it all works together

We’re starting with a browser
window that’s been resized to
a fairly wide width.

Each block element is
flowed top to bottom
as you’d expect, with a
linebreak in between each.

And the inline
elements are
flowed from the
top left to the
bottom right
of the element’s
content area.

If the inline content of each block fits the
width of the content area, then it’s placed
there; otherwise, more vertical room is made for
the content and it’s continued on the next line.

Here, we’ve resized the browser
window, squeezing all the content
into a smaller horizontal size.

Things flow the same way, although in
some places, the inline elements take
up more vertical lines to fit.

Now the block elements take up
more vertical room because the inline
content has to fit into a smaller
horizontal space.

h1

p

p

p

p

h2

h2

img img

img img

text

text

text

text

text

text

span spanem
em

text

text

text

text

you are here 4 477

layout and positioning

Let’s zoom in just a bit and look at one more aspect of how the browser lays
out block and inline elements. It turns out that the browser treats margins
differently depending on which type of element is being placed on the page.

One more thing you should know about flow and boxes

When the browser is placing two inline
elements next to each other…
When the browser has the task of placing two inline elements side by side, and
those elements have margins, then the browser does what you might expect. It
creates enough space between the elements to account for both margins. So,
if the left element has a margin of 10 pixels and the right has a margin of 20
pixels, then there will be 30 pixels of space between the two elements.

When the browser is placing two block
elements on top of each other…

Here we’ve got two images side by
side, and images are displayed as inline
elements by default. So, the browser
uses both of their margins to calculate
the space that goes between them.

margin

Here’s where things get more interesting. When the browser places two block
elements on top of each other, it collapses their shared margins together. The height
of the collapsed margin is the height of the largest margin.

When the browser
places two block
elements on top
of each other, it
collapses their
margins.

margin

Their shared margin is
the size of the larger
of the two margins.
Say the top element’s
bottom margin is 10
pixels, and the bottom
element’s top margin
is 20 pixels. Then the
collapsed margin will be
20 pixels.

478 Chapter 11

questioning margins

Q: So if I have a block element with a zero margin, and a
block element below it with a top margin of 20, the margin
between them would end up being 20?

A: Right. If one of the margins is bigger, then the margin becomes
the larger of the two, even if one margin is zero. But if the margins
are the same, say, 10 pixels, then they just get collapsed together to
10 pixels total.

Q: Can inline elements really have margins?

A: They sure can, although you’ll find that you often don’t set the
margins of inline elements. The one exception is images. It is very
common to not only set margins but also borders and padding on
images. And while we aren’t going to be setting any inline element
margins in this chapter, we will be setting the border on one a little
later.

Q: What if I have one element nested inside another and they
both have margins? Can they collapse?

A: Yes, that can happen. Here’s how to figure out when they will:
whenever you have two vertical margins touching, they will collapse,
even if one element is nested inside the other. Notice that if the outer
element has a border, the margins will never touch, so they won’t
collapse. But if you remove the border, they will. This is sometimes
puzzling when you first see it happen, so put it in the back of your
mind for when it occurs.

Q: So how exactly does text work as an inline element since
its content is not an element?

A: Even if text is content, the browser needs to flow it onto the
page, right? So the browser figures out how much text fits on a given
line, and then treats that line of text as if it were an inline element.
The browser even creates a little box around it. As you’ve seen, if you
resize the page, then all those blocks may change as the text is refit
within the content area.

We’ve been through seven pages
of “flow.” When are you going to

explain that one little property we put
into our CSS file? You know, the

float: right;

It might be one little property, but the way it works is closely tied to
how the browser flows elements and content onto the page. But hey,
you know that now, so we can explain float.

Here’s the short answer: the float property first takes an element
and floats it as far left or right as it can (based on the value of float).
It then flows all the content below it around the element. Of course
there are a few more details, so let’s take a look…

To understand float, you have to understand flow.

you are here 4 479

layout and positioning

How to float an element
Let’s step through an example of how you get
an element to float, and then we’ll look at what
it does to the flow of the page when you do.

Now give it a width
A requirement for any floating element is that it
have a width. We’ll make this paragraph 200 pixels
wide. Here’s the rule:

#amazing {
 width: 200px;
}

Now the paragraph is 200 pixels
wide, and the inline content
contained in it has adjusted to that
width. Keep in mind, the paragraph
is a block element, so no elements are
going to move up beside it because all
block elements have linebreaks before
and after them.

First, give it an identity
Let’s take one of these paragraphs and give
it an id. We’d like to call it the “amazing
floating paragraph,” but we’ll just call it

“amazing” for short.

h1

p

p

p

p id=“amazing”

img img img img

h2

h2

text

text

text

text

span spanem em

text
text

text

h1

p

p

p

img img img img

h2

h2

text

text

text

span spanem em

text
text

text

p id=“amazing”

text

text

text

480 Chapter 11

how float works

h1

p

p

p

img img img img

h2

h2

text

text

text

text

text

span
span

em
em

text
text

text

p id=“amazing”

text

text

text

Now let’s add the float property. The float
property can be set to either left or right. Let’s
stick with right:

#amazing {
 width: 200px;
 float: right;
}

(1) First, the browser flows the
elements on the page as usual,
starting at the top of the file and
moving toward the bottom.

Now that we’ve floated the “amazing” paragraph,
let’s step through how the browser flows it and
everything else on the page.

(2) When the browser encounters
the floated element, it places it all
the way to the right. It also removes
the paragraph from the flow, like
it’s floating on the page.

(3) Because the floated paragraph
has been removed from the normal
flow, the block elements are filled in,
like the paragraph isn’t even there.

(4) But when the inline elements
are positioned, they respect the
boundaries of the floated element.
So they are flowed around it.

Notice that the
block elements are
positioned under
the floated element.
That’s because the
floated element is no
longer part of the
normal flow.

However, when the
inline elements are
flowed within the
block elements, they
flow around the
borders of the
floating element.

Now float it
h1

h2

text

text

p id=“amazing”

text

text

text

you are here 4 481

layout and positioning

Behind the scenes at the lounge
Now you know all about flow and how floated elements
are placed on the page. Let’s look back at the lounge
and see how this all fits together.

Remember, in addition to setting the
elixirs <div> to float right, we also
moved the elixirs <div> up just below
the logo at the top of the page.

Moving the <div> allowed us to float it to the
right and then have the entire page flow around
it. If we had left the elixirs <div> below the music
recommendations, then the elixirs would have been
floated right after most of the page had been placed.

All these elements follow the
elixirs in the HTML, so they
are flowed around it.

Also notice that the text wraps
around the bottom of the elixirs,
because the text is contained in a
block element that is the width of
the page. If yours doesn’t wrap, try
narrowing your browser window until
the text wraps underneath the elixirs.

Remember that the elixirs <div> is floating
on top of the page. All the other elements
are underneath it, but the inline content
respects the elixirs’ boundaries when they
are flowing into the page.

482 Chapter 11

a new assignment: starbuzz

Move the elixirs <div> back to its original place below the main content, then save
and reload the page. Where does the element float now? Check your answer in the
back and then put your elixirs <div> back underneath the header.

Nice stuff. Do you think I’m going to
watch these fantastic lounge designs

and not want you to improve Starbuzz?
You’ve got a blank check…take

Starbuzz to the next level.

It looks like we’ve got a new assignment. Starbuzz
really could use some improvement. Sure, you’ve
done a great job of creating the typical top-to-
bottom page, but now that you know flow, you
should be able to give Starbuzz Coffee a slick new
look that is more user-friendly than the last design.

We do have a little secret though…we’ve been
working on this one a bit already. We’ve created
an updated version of the site. Your job is going
to be to provide all the layout. Don’t worry, we’ll
bring you up to speed on everything we’ve done so
far—it’s nothing you haven’t seen before.

you are here 4 483

layout and positioning

The new Starbuzz
Let’s take a quick look at what we’ve got so
far, starting with the page as it looks now.
Then we’ll take a peek at the markup and
the CSS that’s styling it. We’ve got a header now with a new spiffy Starbuzz logo and the

company mission statement. This is actually just a GIF image.

We’ve got four sections: the header,
a main content section, a section
advertising something new called the
“Bean Machine,” and a footer.

Each section is a <div> that can
be styled independently.

It looks like we’ve got one
background color for the
page as a whole, and then
each <div> is using an image
as a background.

Here’s the “Bean Machine” area. This links to
a new area of Starbuzz Coffee where you can
order your coffee beans online. This link doesn’t
work just yet because you’re going to build the
Bean Machine in an upcoming chapter.

Here’s the footer. It doesn’t
use a background image, just a
background color.

Notice that we’ve styled the
links in an interesting way,
with dotted underlines…

484 Chapter 11

looking over the markup

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Starbuzz Coffee</title>
 <link type="text/css" rel="stylesheet" href="starbuzz.css">
</head>
<body>

 <div id="header">

 </div>

 <div id="main">
 <h1>QUALITY COFFEE, QUALITY CAFFEINE</h1>
 <p>
 At Starbuzz Coffee, we are dedicated to filling all your caffeine needs through our
 quality coffees and teas. Sure, we want you to have a great cup of coffee and a great
 coffee experience as well, but we're the only company that actively monitors and
 optimizes caffeine levels. So stop by and fill your cup, or order online with our new Bean
 Machine online order form, and get that quality Starbuzz coffee that you know will meet
 your caffeine standards.
 </p>
 <p>
 And, did we mention caffeine? We've just started funding the guys doing all
 the wonderful research at the <a href="http://buzz.wickedlysmart.com"
 title="Read all about caffeine on the Buzz">Caffeine Buzz.
 If you want the latest on coffee and other caffeine products,
 stop by and pay them a visit.
 </p>
 <h1>OUR STORY</h1>
 <p>
 "A man, a plan, a coffee bean". Okay, that doesn't make a palindrome, but it resulted
 in a damn good cup of coffee. Starbuzz's CEO is that man, and you already know his
 plan: a Starbuzz on every corner.
 </p>
 <p>
 In only a few years he's executed that plan and today
 you can enjoy Starbuzz just about anywhere. And, of course, the big news this year
 is that Starbuzz teamed up with Head First readers to create Starbuzz's Web presence,
 which is growing rapidly and helping to meet the caffeine needs of a whole new set of
 customers.
 </p>
 <h1>STARBUZZ COFFEE BEVERAGES</h1>
 <p>
 We've got a variety of caffeinated beverages to choose
 from at Starbuzz, including our

A look at the markup
Now let’s take a look at the new Starbuzz markup. We’ve taken each of the logical sections and
placed it into a <div>, each with its own id. Beyond the <div>s and s, there’s really
nothing here that you hadn’t already seen by about Chapter 5. So, take a quick look and get
familiar with the structure, and then turn the page to check out the CSS style.

Here’s all the usual
HTML administravia…

…followed by a <div> for
the header and a <div>
for the main content area.

you are here 4 485

layout and positioning

 House Blend,
 Mocha Cafe Latte,
 Cappuccino,
 and a favorite of our customers,
 Chai Tea.
 </p>
 <p>
 We also offer a variety of coffee beans, whole or ground, for you to
 take home with you. Order your coffee today using our online
 Bean Machine,
 and take the Starbuzz Coffee experience home.
 </p>

 </div>

 <div id="sidebar">
 <p class="beanheading">

 ORDER ONLINE
 with the
 BEAN MACHINE

 FAST

 FRESH

 TO YOUR DOOR

 </p>
 <p>
 Why wait? You can order all our fine coffees right from the Internet with our new,
 automated Bean Machine. How does it work? Just click on the Bean Machine link,
 enter your order, and behind the scenes, your coffee is roasted, ground
 (if you want), packaged, and shipped to your door.
 </p>
 </div>

 <div id="footer">
 © 2012, Starbuzz Coffee

 All trademarks and registered trademarks appearing on
 this site are the property of their respective owners.
 </div>

</body>
</html>

This is more of the main content
area continued over here.

Here’s the <div> for the Bean Machine.
We’ve given it an id of “sidebar”. Hmm,
wonder what that could mean?

And finally, we have the <div> that
makes up the footer of the page.

486 Chapter 11

beginning starbuzz style

body {
 background-color: #b5a789;
 font-family: Georgia, "Times New Roman", Times, serif;
 font-size: small;
 margin: 0px;
}

#header {
 background-color: #675c47;
 margin: 10px;
 height: 108px;
}

#main {
 background: #efe5d0 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
}

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
}

#footer {
 background-color: #675c47;
 color: #efe5d0;
 text-align: center;
 padding: 15px;
 margin: 10px;
 font-size: 90%;
}

h1 {
 font-size: 120%;
 color: #954b4b;
}

.slogan { color: #954b4b;}

.beanheading {
 text-align: center;
 line-height: 1.8em;
}

And a look at the style
Let’s get a good look at the CSS that styles the new Starbuzz page. Step through
the CSS rules carefully. While the new Starbuzz page may look a little advanced,
you’ll see it’s all just simple CSS that you already know.

First, we just set up
some basics in the body:
a background color and
fonts, and we also set the
margin of the body to 0.
This makes sure there’s no
extra room around the
edges of the page.

Next, we have a rule for
each logical section. In
each, we’re tweaking the
font size, adding padding
and margins and also—in
the case of main and
the sidebar—specifying a
background image.

Next, we set up the fonts and
colors on the headings.

And then some colors on the class
called slogan, which is used in the
sidebar <div>, and likewise with
the beanheading class, which is
used there as well.

you are here 4 487

layout and positioning

a:link {
 color: #b76666;
 text-decoration: none;
 border-bottom: thin dotted #b76666;
}
a:visited {
 color: #675c47;
 text-decoration: none;
 border-bottom: thin dotted #675c47;
}

For the last two rules in the Starbuzz CSS, we use the
a:link and a:visited pseudo-classes to style the links.

…we’re getting a nice dotted underline effect on the links by using a dotted bottom border instead of an underline. This is a great example of using the border property on an inline element.We’re setting the border-bottom only for this <a> element.

Let’s take Starbuzz to the next level
Here’s the goal: to turn Starbuzz Coffee into the site on
the right. To do that, we need to move the Bean Machine
sidebar over to the right so we’ve got a nice two-column
page. Well, you’ve done this once already with the lounge,
right? So, based on that, here’s what you need to do:

Give the element you’re going to float a unique
name using an id. That’s already done.

1

Set a width on the element. 3

Make sure the element’s HTML is just below
the element you want it to float under—in this
case, the Starbuzz header.

2

Float the element to the left or the right. It looks
like you want to float it right.

4

Let’s get started. In a few simple steps, we should have the
Starbuzz CEO sending a few Chai Teas over on the house.

We’ve got a nice two-column look
here, with discrete columns.

We’re removing the default underline that links get by
setting text-decoration to none. Instead…

488 Chapter 11

moving the sidebar

Move the sidebar just below
the header
It’s a fact of life that when you float an element, you
need to move the HTML for the element directly below
the element that you want it to follow. In this case, the
sidebar needs to come under the header. So, go ahead
and locate the sidebar <div> in your editor and move
the entire <div> to just below the header <div>.
You’ll find the HTML in the file “index.html” in the

“chapter11/starbuzz” folder. After you’ve done that and
saved, reload the page.

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 280px;
 float: right;
}

Now the sidebar should be on
top of the main content area.

Set the width of the sidebar
and float it
Let’s set the width of the sidebar to 280 pixels. And to float the
sidebar, add a float property to “chapter11/starbuzz.css”, like this:

We’re using an id selector to select the
element with the id “sidebar”, which we
know is the <div> for the sidebar.

We’re setting the width of the
content area to 280 pixels.

And then we’re floating the sidebar to the right. Remember, this moves the sidebar as far right as possible below the header, and it also removes the sidebar from the normal flow. Everything else below the sidebar in the HTML is going to move up and wrap around it.

you are here 4 489

layout and positioning

On paper, this looks like a great idea. What
we do is set a width on the main content
<div> and float it to the left, and then let
the rest of the page flow around it. That
way, we get to keep the ordering of the
page and we also get two columns.

The only problem is, this doesn’t result in a
very nice page. Here’s why: remember, you
have to set a width on the element that you
are going to float, and if you set a width
on the content area, then its width is going
to remain fixed while the rest of the page
resizes along with the width of the browser.
Typically, sidebars are designed to be
narrower than the main content area, and
often look terrible when they expand. So,
in most designs, you want the main content
area to expand, not the sidebar.

But we are going to look at a way to use
this idea that works great. So hang on to
this idea. We’ll also talk a little more about
why you’d even care what order your
sections are in.

That’s actually a great idea, but
there are a couple of issues.

I have an idea. In the future, why
don’t we float the main content to the

left, rather than the sidebar to the right?
Since the main content is already at the

top, we wouldn’t have to move things
around, and we get the same effect.

490 Chapter 11

testing the float

Test driving Starbuzz
Make sure you add the new sidebar properties to the

“starbuzz.css” file in the “chapter11/starbuzz” folder, and
then reload the Starbuzz page. Let’s see what we’ve got…

Hmm, this looks pretty good, but if you flip back three
pages, you’ll see we’re not quite where we want to be.

The main content and the
sidebar are on the left
and the right, but they
don’t really look like two
columns yet.

Look at how the
background images of
the two sections just
run together. There’s
no separation between
the columns.

And the text wraps around and under the sidebar, which doesn’t make this
look like two columns either. Hmm, that is actually how the lounge worked
too—maybe we should have expected that.

you are here 4 491

layout and positioning

Fixing the two-column problem

The first thing to
remember is that the
sidebar is floating on
the page. The main
content area extends
all the way under it.

So, what if we give the main
content area a right margin
that is at least as big as the
sidebar? Then its content will
extend almost to the sidebar,
but not all the way.

Then we’ll have separation between
the two, and since margins are
transparent and don’t show the
background image, the background
color of the page itself should show
through. And that’s what we’re
looking for (flip back a few pages
and you’ll see). Let’s make the margin as

wide as the sidebar.

At this point, you might be realizing that page layout is a bit of an art—we’ve
got a set of techniques for laying out block elements, but none of them is
perfect. So, what we’re going to do is solve our problem using a common
technique that is widely used. It’s not perfect, as you’ll see, but in most cases
it gives you good results. And after this, you’re going to see a few other ways
to approach the same two-column problem, each with its own advantages.
What’s important here is that you understand the techniques and why they
work, so you can apply them to your own problems and even adapt them
where necessary.

492 Chapter 11

using margins for two columns

What we want to do is set a right margin on the main content section so that it’s the
same width as the sidebar. But how big is the sidebar? Well, we hope you aren’t already
rusty since the previous chapter. Here’s all the information you need to compute the
width of the sidebar. Check your answer in the back of the chapter.

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 280px;
 float: right;
} You’ll find everything you

need to compute the width
of the sidebar in this rule.

#main {
 background: #efe5d0 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 margin: 0px 330px 10px 10px;
}

Setting the margin on the main section
The width of the sidebar is 330 pixels, and that includes 10 pixels of left margin on
the sidebar, which will provide the separation we need between the two columns
(what the publishing world calls a “gutter”). Add the 330-pixel right margin to the
#main rule in your “starbuzz.css” file, like we’ve done below:

We’re changing the right margin to 330 pixels
to match the size of the sidebar.

you are here 4 493

layout and positioning

Test drive
As usual, save your “starbuzz.css” file and then
reload “index.html”. You should now see a
nice gutter between the two columns. Let’s
think through how this is working one more
time. The sidebar is floating right, so it’s been
moved as far to the right as possible, and the
whole <div> has been removed from the
normal flow and is floating on top of the page.
Now the main content <div> is still taking
up the width of the browser (because that’s
what block elements do), but we’ve given it a
margin as wide as the sidebar to reduce the
width of the content area. The result is a nice
two-column look. You know the box of the
main <div> still goes under the sidebar, but
we won’t tell anyone if you don’t.

Uh oh, we have
another problem
As you were test driving the
page, you might have noticed
a little problem. If you
resize the browser to a wide
position, the footer comes up
underneath the sidebar. Why?
Well, remember, the sidebar is
not in the flow, so the footer
pretty much ignores it, and
when the content area is too
short, the footer moves right up.
We could use the same margin
trick on the footer, but then the
footer would only be under the
content area, not the whole
page. Geez. So, what now?

By expanding the margin
of the main <div>, we’re
creating the illusion of a
two-column layout, complete
with a gutter in between.

We’ve got a problem. When you resize your browser to a
wide position, the footer and the sidebar start to overlap.

494 Chapter 11

a margin alternative

Wait a sec. Before you get way into
solving that problem, I have to ask, why
did we have to go to all this trouble of
using a margin? Why don’t we just set
the width of the main area? Wouldn’t

that do the same thing?

The problem with setting a width on both the
content area and the sidebar is that this doesn’t
allow the page to expand and contract correctly
because both have fixed widths. Check the screen-
shots below that show how it works (or rather,
doesn’t work).

But this is good. You’re thinking in the right ways,
and a little later in the chapter we’re going to come
back to this idea when we talk about “liquid versus
frozen” layouts. There are ways to make your idea
work if we lock a few other things down first.

That sounds good…until you try it.

And when the browser window is made
small, the two start to overlap.

When the browser is wide, the
two totally separate.

you are here 4 495

layout and positioning

div id=“header”

div id=“footer”

div id=“main” div id=“sidebar”

Solving the overlap problem
To fix our overlapping problem, we’re going to use
another CSS property that you haven’t seen yet: the
clear property, and here’s how it works…

Don’t even
think about putting

a floating element to
the right of me.

#footer {
 background-color: #675c47;
 color: #efe5d0;
 text-align: center;
 padding: 15px;
 margin: 10px;
 font-size: 90%;
 clear: right;
}

Here’s what we’ve got now. The
“main” <div> is short enough
that the footer <div> is coming
right up and overlapping with
the sidebar <div>.

This happens because the sidebar has been pulled out of the flow.
So, the browser just lays out the main and footer <div>s like it
normally would, ignoring the sidebar (although remember that when
the browser flows inline elements, it will respect the borders of
the sidebar and wrap inline elements around it).

You can use the CSS clear property on an element to request that as the element is
being flowed onto the page, no floating content is allowed on the left, right, or both
sides of the element. Let’s give it a try…

Here we’re adding a property to
the footer rule, which says that
no floating content is allowed on
the right of the footer.

Now when the browser places the
elements on the page, it looks to see if
there is a floating element to the right
side of the footer, and if there is, it
moves the footer down until there is
nothing on its right. Now, no matter
how wide you open the browser, the
footer will always be below the sidebar.

Now the footer is placed below
the sidebar so that there are no
floating elements to its right.

div id=“header”

div id=“footer”

div id=“main” div id=“sidebar”

496 Chapter 11

more about columns and floats

Test drive

Q: Can I float to the center?

A: No, CSS only allows you to float an
element to the left or right. But if you think
about it, if you were to float to the center,
then the inline content under the floated
element would have to be flowed around both
sides of your element, which would be quite
tricky to get to work in a browser. But one of
the new layout solutions that will be coming
in future versions of CSS may provide a way
to do it—we’ll have to wait and see.

Q: Do margins collapse on floated
elements?

A: No, they don’t, and it’s pretty easy
to see why. Unlike block elements that
are flowed on the page, floated elements
are just, well, floating. In other words, the
margins of floated elements aren’t actually
touching the margins of the elements in the
normal flow, so they can’t be collapsed.

But this raises a good point, and identifies a
common error in layouts. If you have a main
content area and a sidebar, it is common to
set a top margin on each. Then, if you float
the sidebar, it still has a margin, and that
margin won’t be collapsed with whatever is
above it anymore. So you can easily end up
having different margins on the sidebar and
on the main content if you don’t remember
that floated elements don’t collapse margins.

Now our footer problems are solved. The
footer will always be below the sidebar, no
matter how narrow or wide the browser.

Go ahead and add the clear property to
your “starbuzz.css” file in the footer rule,
and then reload “index.html”. You’ll see that
when the screen is wide, the footer now stays
below the sidebar. Not bad!

Now, at this point the page is looking pretty
good, but there are still a few improvements
we can make. For instance, we’d like each
column to come down to meet the footer
so they are even—notice, as it is now, there
is a gap either between the main content
and the footer (if the browser window is set
wide), or the sidebar and the footer (if the
browser is set to a normal width). But fixing
this isn’t that easy using float, so instead,
we’re going to move on and look at a few
more ways to lay out these pages using other
CSS techniques. As you’re going to see,
there are many ways to do things in CSS,
and each method has its own strengths and
weaknesses.

What’s important to you is that you
understand the techniques so that you can
apply them when and where you need to.

you are here 4 497

layout and positioning

The only thing I
don’t like about this design is

that when I view the web page on
my smartphone, it puts the sidebar
content above the main content, so I

have to scroll through it.

This is one of the disadvantages of the way we’ve
designed this page—because we need the sidebar to
be located just under the header and before the main
content, anyone using a browser with limited capabilities
(PDAs, small mobile devices, screen readers, and so
on) will see the page in the order it is written, with the
sidebar first. However, most people would rather see your
main content before any kind of sidebar or navigation.

So, let’s look at another way of doing this, which goes
back to your idea of using float “left” on the main
content.

Right. That happens because of the
way we ordered the <div>s.

Q: Can I float an inline element?

A: Yes, you sure can. The best example —and a common
one—is to float images. Give it a try—float an image left or right in a
paragraph and you’ll see your text flow around it. Don’t forget to add
padding to give the image a little room, and possibly a border. You
can also float any other inline element you like, but it’s not commonly
done.

Q: Is it correct to think about floated elements as elements
that are ignored by block elements, while inline elements know
they are there?

A: Yes, that’s a good way of thinking about it. Inline content
nested inside a block element always flows around a floated element,
observing the boundaries of the floated element, while block elements
are flowed onto the page as normal. The exception is when you set
the clear property on a block element, which causes a block element
to move down until there are no floating elements next to it on the
right, left, or both sides, depending on the value of clear.

498 Chapter 11

the no css test

Want to know how your pages are going to look to your users under
bad conditions (like on a browser that doesn’t support CSS)? Then
open your “index.html” file and remove the <link> from the <head>,
save, and reload the page in your browser. Now you can see the
real order things will be seen in (or heard from a screen reader). Go
ahead and give it a try. Just make sure you put it back when you’re
done (after all, this is a chapter on CSS).

Righty tighty, lefty loosey

Let’s get the Starbuzz page switched over so that the main content is floating left.
You’re going to see that the mnemonic righty tighty, lefty loosey holds true in the
CSS world too…well, for our sidebar, anyway. Here’s how we convert the page
over…just a few simple steps.

Here’s the Starbuzz page without
CSS. For the most part, we’re in
good shape. It is still very readable,
although the Bean Machine does
come before the main content,
which probably isn’t what we want.

Look Ma, No CSS!

you are here 4 499

layout and positioning

#main {
 background: #efe5d0 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 420px;
 float: left;
}

#footer {
 background-color: #675c47;
 color: #efe5d0;
 text-align: center;
 padding: 15px;
 margin: 10px;
 font-size: 90%;
 clear: left;
}

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 470px;
 width: 280px;
 float: right;
}

Step one: Start with the sidebar
We’re basically swapping the roles of the sidebar and the main content area. The
content area is going to have a fixed width and float, while the sidebar is going to wrap
around the content. We’re also going to use the same margin technique to keep the two
visually separate. But before we start changing CSS, go to your “index.html” file and
move the “sidebar” <div> down below the “main” <div>. After you’ve done that, here
are the changes you need to make to the sidebar CSS rule:

We’re setting a fixed width on the main
content <div>, so delete the sidebar width
property along with the float.

Because the sidebar is now going to flow
under the main content, we need to move the
large margin to the sidebar. The total width
of the main content area is 470 pixels. (Go
ahead and compute that yourself in all that
free time you have. Compute it in the same
way as you did for the sidebar. You should
know that we’re going to set the width of
the main content area to 420 pixels.)

Step two: Take care of the main content
Now we need to float the main <div>. Here’s how to do it:

We’re changing the right margin from
330 pixels back to 10 pixels.

We need to set an explicit width because we’re going to
float this element. Let’s use 420 pixels.

Step three: Take care of the footer
Now we just need to adjust the footer to clear everything to the left, rather than the right.

Change the clear property to have
a value of left, rather than right.
That way, the footer will stay clear
of the main content area.

We’re going to float the main <div> to the left.

500 Chapter 11

contemplating a better solution

A quick test drive
We’ve already said there might be a few
problems with this method of floating
the content to the left. Do a quick test
drive before you move on just to see how
this is all working. Go ahead and make
the changes to your “starbuzz.css” file
and then reload “index.html” in your
browser. Get a good feel for how the page
performs when it is resized to narrow,
normal, and wide.

Actually, this looks pretty good, and we
have the <div>s in the right order now. But
it’s not great that the sidebar expands;
it looks a lot better fixed. Sidebars are
often used for navigation, and they don’t
look very good when expanded.

When we float the sidebar <div> right,
then the design stays nice and tight,
allowing the content to expand, but if we
float the main content to the left, the
design feels too loose, allowing the sidebar
to expand.

Design-wise, the first design worked better, while information-wise, the
second works better (because of the placement of the <div>s). Is there
a way we can have the best of both worlds: have the sidebar at a fixed
width, but the main <div> still first in the HTML? What design tradeoffs
could we make to get there?

you are here 4 501

layout and positioning

Liquid and frozen designs
All the designs we’ve been playing with so far are called liquid layouts
because they expand to fill whatever width we resize the browser to.
These layouts are useful because, by expanding, they fill the space
available and allow users to make good use of their screen space.
Sometimes, however, it is more important to have your layout locked
down so that when a user resizes the screen, your design still looks as it
should. These are called frozen layouts. Frozen layouts lock the elements
down, frozen to the page, so they can’t move at all, and so we avoid a lot
of issues that are caused by the window expanding. Let’s give a frozen
layout a try.

Going from your current page to a frozen page only requires one addition to
your HTML, and one new rule in your CSS.

#allcontent {
 width: 800px;
 padding-top: 5px;
 padding-bottom: 5px;
 background-color: #675c47;
}

We’re going to set the width of “allcontent” to

800 pixels. This will have the effect of constrainin
g

everything in it to fit within 800 pixels.

The outer “allcontent” <div> is always 800 pixels, even when the browser is resized, so we’ve
effectively frozen the <div> to the page, along with everything inside it.

While we’re at it, since this is the first time
we’re styling this <div>, let’s add some padding
and give it its own background color. You’ll see
this helps to tie the whole page together.

HTML changes

CSS changes

In your HTML you’re going to add a new <div> element with the id
“allcontent”. Like its name suggests, this <div> is going to go around all the
content in your page. So place the opening <div> tag before the header
<div> and the closing tag below the footer <div>.

<body>
 <div id="allcontent">
 <div id="header">
 ...rest of the HTML goes here...
 </div>
 </div>
</body>

This <div> closes the footer <div>.

Add a new <div> with the id of “allcontent”
around all the other elements in the <body>.

Now we’re going to use this <div> to constrain the size of all the elements
and content in the “allcontent” <div> to a fixed width of 800 pixels.
Here’s the CSS rule to do that:

502 Chapter 11

frozen layouts

What’s the state between liquid
and frozen? Jello, of course!

The frozen layout has some benefits, but it also just plain
looks bad when you widen the browser. But we’ve got a fix,

and it’s a common design you’ll see on the Web. This design is
between frozen and liquid, and it has a name to match: Jello.

Jello layouts lock down the width of the content area in
the page, but center it in the browser. It’s actually easier to
change the layout to a jello layout and let you play with it
than to explain how it behaves, so let’s just do it:

#allcontent {
 width: 800px;
 padding-top: 5px;
 padding-bottom: 5px;
 background-color: #675c47;
 margin-left: auto;
 margin-right: auto;
}

Rather than having fixed left and right
margins on the “allcontent” <div>, we’re
setting the margins to “auto”.

If you remember, when we talked about giving a content area a width of “auto”, the
browser expanded the content area as much as it needed to. With “auto” margins,
the browser figures out what the correct margins are, but also makes sure the left
and right margins are the same, so that the content is centered.

Go ahead and add this rule to the bottom of
“starbuzz.css”, and then reload “index.html”. Now
you can see why we call it a frozen layout. It doesn’t
move when the browser is resized.

This certainly solves the problem of the sidebar
expanding, and it looks pretty nice. It is a little
strange when the browser is very wide, though,
because of all the empty space on the right side.

But we’re not done yet; we’ve got a
little room for improvement.

A frozen test drive

Now the “allcontent” <div> is 800 pixels in width, no matter
how you resize the browser. And, because all the other <div>s
are inside “allcontent”, they will fit into the 800-pixel
space as well. So, the page is basically frozen to 800 pixels.

you are here 4 503

layout and positioning

With CSS, there are typically lots of ways to approach a layout, each with its
own strengths and weaknesses. Actually, we’re just about to look at another
common technique for creating a two-column layout that keeps the content in
the correct order, and avoids some of the problems of the liquid layouts. But as
you’ll see, there are some tradeoffs.

With this new technique, we’re not going to float elements at all. Instead, we’re
going to use a feature of CSS that allows you to precisely position elements on
the page. It’s called absolute positioning. You can also use absolute positioning
for some nice effects beyond just multicolumn layouts, and we’ll look at an
example of that, too.

To do all this, we’re going to step back to the original HTML and CSS we
started with in the beginning of this chapter. You can find a fresh copy of these
files in the “chapter11/absolute” folder. Be sure and take another look at these
files so you remember what they originally looked like. Recall that we’ve got
a bunch of <div>s: one for the header, one for main, one for the footer, and
also a sidebar. Also remember that in the original HTML, the sidebar <div> is
below the main content area, where we’d optimally like to have it.

Test driving with a tank of jello
Add the two margin properties to your “starbuzz.css” file, and then reload
the page. Now play with the size of the browser. Pretty nice, huh?

Narrow

Wide

So if we want our content in the
correct order, we either have to live
with an expanding sidebar or we have

to use a jello layout? Is there any
other way to do this?

504 Chapter 11

using absolute positioning

div id=“header”

div id=“footer”

div id=“main”
div id=“sidebar”

How absolute positioning works
Let’s start by getting an idea of what absolute
positioning does, and how it works. Here’s a little
CSS to position the sidebar <div> with absolute
positioning. Don’t type this in just yet; right now we
just want you to get a feel for how this works:

#sidebar {
 position: absolute;
 top: 100px;
 right: 200px;
 width: 280px;
}

The first thing we do is use the
position property to specify that the
element will be positioned absolutely.

Next we set top and
right properties.

And we also give
the <div> a width.

Because sidebar is now
absolutely positioned, it
is removed from the flow
and positioned according
to any top, left, right,
or bottom properties
that are specified.

Now let’s look at what this CSS does. When an
element is absolutely positioned, the first thing the
browser does is remove it completely from the flow.
The browser then places the element in the position
indicated by the top and right properties (you can
use bottom and left as well). In this case, the sidebar
is going to be 100 pixels from the top of the page, and
200 pixels from the right side of the page. We’re also
setting a width on the <div>, just like we did when it
was floated.

What the CSS does

The sidebar is
positioned 200
pixels from the
right of the page.

Because the sidebar is out of
the flow, the other elements
don’t even know it is there,
and they ignore it totally.

Elements that are in the flow don’t even wrap their
inline content around an absolutely positioned element.
They are totally oblivious to it being on the page.

And the sidebar
is positioned 100
pixels from the
top of the page.

you are here 4 505

layout and positioning

div id=“header”

div id=“footer”

div id=“main”
div id=“sidebar”

div id=“annoyingad”

#annoyingad {
 position: absolute;
 top: 150px;
 left: 100px;
 width: 400px;
}

Another example of absolute positioning
Let’s look at another example. Say we have another <div>
with the id “annoyingad”. We could position it like this:

The annoying ad is being positioned 100
pixels from the left, and 150 pixels
from the top. It’s also a bit wider than
the sidebar, at 400 pixels.

Now we have a second <div>, positioned absolutely, 100 pixels from the left
and 150 pixels from the top.

Just like with the sidebar, we’ve placed the “annoying
ad” <div> at a precise position on the page. Any
elements underneath that are in the normal flow
of the page don’t have a clue about the absolutely
positioned elements layered overhead. This is a little
different from floating an element, because elements
that were in the flow adjusted their inline content
to respect the boundaries of the floated element.
But absolutely positioned elements have no effect
whatsoever on the other elements.

Another interesting thing about absolutely
positioned elements is that you can layer them
on top of each other. But if you’ve got a few
absolutely positioned elements at the same
position in a page, how do you know the
layering? In other words, who’s on top?

Each positioned element has a property called
a z-index that specifies its placement on an
imaginary z-axis (items on top are “closer” to
you, and have a bigger z-index).

Who’s on top?

The header, main, and
footer <div>s are all
in the flow, and flat
on the page.

The sidebar and annoyingad <div>s
are layered on the page, with the
annoyingad having a greater z-index
than the sidebar, so it’s on top.

Notice the annoyingad <div> is
on top of the sidebar <div>.

div id=“header”

div id=“footer”

div id=“main”

div id=“sidebar”

div id=“annoyingad”

506 Chapter 11

more about the position property

Q: What is the position property
set to by default?

A: The default value for positioning
is “static”. With static positioning,
the element is placed in the normal
document flow and isn’t positioned by
you—the browser decides where it
goes. You can use the float property to
take an element out of the flow, and you
can say it should float left or right, but
the browser is still ultimately deciding
where it goes. Compare this to the
“absolute” value for the position property.
With absolute positioning, you’re telling
the browser exactly where to position
elements.

Q: Can I only position <div>s?

A: You can absolutely position any
element, block or inline. Just remember
that when an element is absolutely
positioned, it is removed from the normal
flow of the page.

Q: So, I can position an inline
element?

A: Yes, you sure can. For instance,
it’s common to position the
element. You can position s,
s, and so on as well, but it isn’t
common to do so.

Q: Are there position property
values other than static and
absolute?

A: There are actually four: static,
absolute, fixed, and relative. You’ve
already heard about static and absolute.
Fixed positioning places an element in
a location that is relative to the browser
window (rather than the page), so fixed
elements never move. You’ll see an
example of fixed positioning in a few
pages. Relative positioning takes an
element and flows it on the page just
like normal, but then offsets it before
displaying it on the page. Relative
positioning is commonly used for more
advanced positioning and special
effects.

Q: Do I have to specify a width for
an absolutely positioned element just
like the floated elements?

A: No, you don’t have to specify a
width for absolutely positioned elements.
But if you don’t, by default, the block
element will take up the entire width
of the browser, minus any offset you
specify from the left or right. This might
be exactly what you want, or it might not.
So set the value of the width property if
you want to change this default behavior.

Q: Do I have to use pixels for
positioning?

A: No—another common way to
position elements is using percentages.
If you use percentages, the positions of
your elements may appear to change as
you change the width of your browser.
So, for example, if your browser is 800
pixels wide, and your element’s left
position is set to 10%, then your element
will be 80 pixels from the left of the
browser window. But if your browser
is resized to 400 pixels wide, then the
width will be reduced to 10% of 400
pixels, or 40 pixels from the left of the
browser window.

Another common use for percentages
is in specifying widths. If you don’t need
specific widths for your elements or
margins, then you can use percentages
to make both your main content area
and your sidebars flexible in size. You’ll
see this done a lot in two- and three-
column layouts.

Q: Do I have to know how to
use z-indexes to use absolute
positioning?

A: No, z-indexes tend to be used
most often for various advanced uses
of CSS, especially when web page
scripting is involved, so they’re a little
beyond the scope of this book. But they
are a part of how absolute positioning
works, so it’s good to know about
z-index (we’ll come back to touch on
z-index again in just a bit).

you are here 4 507

layout and positioning

Using absolute positioning
We’re now going to create a two-column Starbuzz page using techniques similar to
those we used with the float version of the page; however, this time we’ll use absolute
positioning. Here’s what we’re going to do:

First we’re going to make the sidebar <div> absolutely positioned.
In fact, we’re going to position it in exactly the same place that we
floated it to before.

1

Next, we’re going to give the main content another big margin so
that the sidebar can sit on top of the margin space.

2

Finally, we’re going to give this a good testing and see how it
compares to the float version.

3

Changing the Starbuzz CSS

Our HTML is all ready to go, and the sidebar <div> is right
where we want it (below the important main content). All we need
to do is make a few CSS changes and we’ll have a sidebar that is
absolutely positioned. Open your “starbuzz.css” file and let’s make
a few changes to the sidebar:

#sidebar {

 background: #efe5d0 url(images/background.gif) bottom right;

 font-size: 105%;

 padding: 15px;

 margin: 0px 10px 10px 10px;

 position: absolute;

 top: 128px;

 right: 0px;

 width: 280px;

}

Okay, now we’re going to specify that the sidebar is absolutely
positioned 128 pixels from the top, and 0 pixels from the right
of the page. We also want the sidebar to have a width, so let’s
make it the same as the float version: 280 pixels.

You’ll see where the 128
came from in a sec…

Remember, we are going back

to the original versions of
 the

files, which you can find in the

“chapter11/absolute” folde
r.

Zero pixels from the
right will make sure that
the sidebar sticks to the
right side of the browser.

You can work out of the “absolute”
folder, or copy the files “index.html”
and “starbuzz.css” into the “starbuzz”
folder and work from there, like we did.

508 Chapter 11

using margins with positioning

div id=“header”

div id=“footer”

div id=“main” div id=“sidebar”

Now we just need to rework the main div

#main {

 background: #efe5d0 url(images/background.gif) top left;

 font-size: 105%;

 padding: 15px;

 margin: 0px 330px 10px 10px;

}

Actually, there’s not much reworking to be done. We’re just adding a
margin like we did with the float version. So, change the right margin
of the main <div> to be 330 pixels, like you did last time.

We’re going to give the sidebar some space to be positioned over by giving the main <div> a
big margin. This is really the same technique we used with the float. The only difference is
the way the sidebar <div> is being placed over the margin.

All you need to do is make that change to your margin, and then save.
But before we take this for a test drive, let’s think about how this is going
to work with the absolutely positioned sidebar.

108 pixels for the header. You can
see this height set in the CSS.

10-pixel bottom margin

10-pixel top margin

The sidebar needs to be
128 pixels from the top
because that’s exactly
how much room the
header takes up, including
margins.

We’re positioning the sidebar to be 128 pixels from
the top, and up against the right side of the page.
Keep in mind, the sidebar has 10 pixels of margin
on the right, so the background color will show
through that like before.

The main <div> is flowed
just below the header,
so it will align with the
top of the sidebar. Also,
it has a right margin
that is the same size
as the sidebar, so all
its inline content will
be to the left of the
sidebar. Remember that
the flowed elements
don’t know about the
absolutely positioned
elements at all, so
the inline content in
the flowed elements
doesn’t wrap around the
absolutely positioned
elements.

You might want to think about what happens to the
footer. Because flowed elements don’t know about
absolute elements, we can’t use “clear” anymore.

you are here 4 509

layout and positioning

Time for the absolute test drive
Make sure you’ve saved the new CSS and then reload

“index.html” in your browser. Let’s check out the results:

Wow, this looks amazingly
like the float version;
however, you know that
the sidebar is being
positioned absolutely.

As you resize the
browser, the sidebar
always sits 128 pixels
from the top, and sticks
to the right of the page.

The main content area
has a right margin that is
exactly the width of the
sidebar, and the sidebar
sits on top of that space.

And the sidebar has a
10-pixel right margin, so
it has spacing between it
and the edge of the page.

And we’ve still got a
nice gutter between
the two columns.

But we are now back to having a problem with the
footer. When the browser gets wide enough, the
absolutely positioned sidebar comes down over the top
of the footer. Unfortunately, we can’t fall back on the
clear property this time, because flowed elements
ignore the presence of absolutely positioned elements.

When the browser is wide, the
vertical space of the main
content area is reduced, and
the sidebar can come down over
the footer.

510 Chapter 11

a solution for the two-column problem

And to do that, you have to use a fairly new
capability of modern browsers: the CSS table
display. What’s that? CSS table display allows
you to display block elements in a table with
rows and columns (you’ll see how in just a
sec), and, by putting your content in a CSS
table, you can easily create multicolumn
designs with HTML and CSS.

Now if you are thinking “why didn’t you
tell us about this before?” well, it was
important for you to understand how
browsers flow and display content (because
not every design task is going to look like
two-column display). But now that you
understand layouts, we can rework the page
using CSS table display.

Well, actually, you can…

Okay, enough already, all
we’re trying to do is create two
columns…why can’t I just write
some HTML or CSS that easily

creates two columns?

At this point, all
modern browsers
support this.

Like all the other
layout solutions, even
table display has
its advantages and
disadvantages.

you are here 4 511

layout and positioning

How CSS table display works
You can think of a table like a spreadsheet—a table has columns and rows, and at
the intersection of each column and row we have a cell. In a spreadsheet table, you
can put a value, like a number or some text, in each cell. With CSS table display,
each cell contains an HTML block element instead.

This is the first column.

This is the
first row.

In each cell, we can place an
element, like a <div>.

In this table we have 4
rows and 3 columns, for
a total of 12 cells.

Let’s say you’ve got a page with three images and three paragraphs, and you want to
lay them out in two columns with three rows. Here’s how you’d do that conceptually,
using a table:

This is the first column.

This is the
first row.

In this table, we have
three rows and two
columns, for a total
of six cells.

In each cell, we can
place a block element.

<p>

<p>

<p>

<div>

<div>

<div>

The table will
automatically
expand to
accommodate
the cell widths
and heights.

Notice that, because we only put block
elements into a table, we’ve wrapped
the images in a <div>.

512 Chapter 11

making two columns with css table display

Given what you know about CSS table displays, sketch out how the two columns
from the Starbuzz page, “main” and “sidebar”, would fit into a table. Check the
answer at the end of the chapter before moving on…

Draw your table here.

How to create the CSS and HTML for a table display
As you can imagine, we’re going to need to add some CSS to tell the browser to
display our columns like a table, but we also need to add some HTML. Why? We
need to add a bit of structure that represents the columns and rows of the table,
and the structure of the enclosing table as well.

Doing this is straightforward—all we need to do is create a <div> for the entire
table and then one <div> per row. And for each column, we just need a block-
level element that is placed within the row <div>. Let’s see how the HTML is
going to work, and then we’ll come back to the CSS we need.

you are here 4 513

layout and positioning

First, we’ll create a <div> that
represents the entire table,
and nest the columns and rows
within that <div>.

2 Next, for each row in the
table, we’ll create another
<div> that will contain the
row content. For Starbuzz,
we have only one row.

And, for each column, we just
need a block element to act as
that column. We already have
two block elements we can
use: the “main” <div> and the

“sidebar” <div>.

<div id=“main”> <div
id=“sidebar”>

1

3

Table

Row

Column

Adding HTML structure for the table display

Now it’s your turn: go ahead and write the HTML you’ll need for the table
structure for Starbuzz below.

Write the HTML we’ll need
for the Starbuzz table
display layout here.

Let’s step through how we’re going to add structure to support the CSS
table display using HTML:

514 Chapter 11

two-column html solution

Now it’s your turn: go ahead and write the HTML you’ll need for the table
structure for Starbuzz below.

...
<div id="tableContainer">
 <div id="tableRow">
 <div id="main">
 ...
 </div>
 <div id="sidebar">
 ...
 </div>
 </div>
</div>
...

Add the new <div> with an id “tableContainer"
around the “main" and “sidebar” <div>s.

We’re not showing it, but the header is up here…

…and the footer is down here. Make sure you don’t
include the header and footer in the new <div>.

First, we’ll wrap everything that’s
going to be displayed like a table in
a <div> called “tableContainer”.

Finally, each column for which we have existing <div>s “main” and “sidebar”, will be displayed as a cell in the table. This is a very simple table layout because it has only two cells, but you can get a lot more complex than this if you need to.

Then, we’ll create a <div> for the
one row we need, and we’ll call
this <div> “tableRow”.

Then add the new <div> with an id “tableRow"
also around the “main" and “sidebar” <div>s,
but nested inside the “tableContainer” <div>.

Make sure you properly nest your closing <div> tags!

Here’s our answer!

Let’s now write this in HTML…

you are here 4 515

layout and positioning

First, we added a <div> for the table with the id “tableContainer”.
This <div> contains the rows and columns. We style the
“tableContainer” <div> like this:

Next, we added a <div> for the row, with the id “tableRow”. We have
only one row, with two cells, so we need just one <div>. If we had
multiple rows, we’d need multiple <div>s. We style the row <div> like this:

Finally, we used our existing “main” and “sidebar” <div>s for the cells
corresponding to each column in the row. We style these <div>s like this:

1

2

3

div#tableContainer {
 display: table;
}

div#tableRow {
 display: table-row;
}

How to use CSS to create table displays
Now that you know how to add the HTML structure to support the CSS table display, let’s
look at how we specify the CSS for each element to create the table display.

#main {
 display: table-cell;
 background: #efe5d0 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
}
#sidebar {
 display: table-cell;
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
}

The “tableContainer” is the
outermost <div> and represents
the entire table structure.

The “tableRow” <div> represents a row in the table.
We have one row in our table, so we just need this
one rule. If you have multiple rows, consider using a
class instead (e.g., div.tableRow) so you can use one
rule to style all the rows.

The “main” and “sidebar” <div>s are the columns in
our table, so they each get displayed as table cells.

516 Chapter 11

the css for two columns

Meanwhile, back at Starbuzz…

#tableContainer {

 display: table;

 border-spacing: 10px;

}

#tableRow {

 display: table-row;

}

#main {

 display: table-cell;

 background: #efe5d0 url(images/background.gif) top left;

 font-size: 105%;

 padding: 15px;

 margin: 0px 10px 10px 10px;

 vertical-align: top;

}

#sidebar {

 display: table-cell;

 background: #efe5d0 url(images/background.gif) bottom right;

 font-size: 105%;

 padding: 15px;

 margin: 0px 10px 10px 10px;

 vertical-align: top;

}

It’s time to add table display into Starbuzz to see how those columns are going to look. To do
that, we’re going to roll back to the Starbuzz HTML and CSS we created at the beginning of
the chapter, so open “chapter11/tabledisplay” to get fresh copies of the HTML and CSS. Edit

“index.html”, and add the two <div>s around both the “main” <div> and the “sidebar” <div>—
the outer one called “tableContainer” and the inner one called “tableRow”. Next, open your

“starbuzz.css” file and let’s add the following to the CSS:

The display: table property tells the “tableContainer”
<div> that it will be laid out like a table.

The border-spacing property adds 10px of border spacing to the
cells in the table. Think of border-spacing like margin for regular
elements. And because we’re using border-spacing on the cells, we no
longer need the margins on the <div>s (see below).

Both the “main” <div> and the
“sidebar” <div> are the cells
in our table. “main” is in the
first column of the “tableRow”
(because it comes first in the
HTML), and “sidebar” is in the
second column.

We can remove the
margins on both

“main” and “sidebar”.

And we need to add a property, vertical-align,
that makes sure all the content in both table
cells is aligned to the top of the cell (as
opposed to the middle or the bottom).

The “tableRow” <div> is the first
(and only) row in our table.

Refer back a
couple of pages to
see the HTML if
you need to.

you are here 4 517

layout and positioning

What’s the problem with
the spacing?

We currently have a 10px bottom margin on the
“header” <div>, and a 10px top margin on the
“footer” <div>. Before we added the table layout,
we were specifying the margins of both the “main”
and “sidebar” <div> to have a 0px top margin, so
the total margin between them and the “header” is
10px, and a 10px bottom margin. Now, remember
that the vertical margin’s block elements sitting
next to each other collapse—meaning that even
though we had 10px of margin on the bottom of
the columns and 10px of margin on the footer,
this margin collapses into 10px, so the total space
between the columns and footer is also 10px.

When we removed the margins from the “main”
and “sidebar” <div>s, we created the 10px of
spacing using the border-spacing property in
the “tableContainer” <div> instead. This adds
10px of space between cells, as well as 10px of
space around the edges.

But the space created by border-spacing and
a margin does not collapse! So we ended up with
20px of space between the header and the columns,
as well as 20px of space between the columns and
the footer. Fortunately, it’s really easy to fix.

We’ve got 10px of border spacing at the top and bottom of the table, and 10px of margin on the header and footer. The margins don’t collapse with the border spacing, so we’ve got 20px of space where we want 10px.

A quick test drive…
This is great! Our two columns look (almost)
perfect. Try making the browser wider, and
then narrower. Notice that both columns
are always equal in height and we no longer
have the problem with a column overlapping
the footer. And we’ve got our content in the
correct order for mobile users!

There’s only one tiny little problem, which is
easily fixed: notice that the spacing between
the header and the columns, as well as the
footer and the columns, is just a bit too large…

Almost perfect!
The only
remaining issue
is the extra
space here…

…and here.

518 Chapter 11

testing two columns

Fix the spacing

#footer {
 background-color: #675c47;
 color: #efe5d0;
 text-align: center;
 padding: 15px;
 margin: 10px;
 margin: 0px 10px 10px 10px;
 font-size: 90%;
}

#header {
 background-color: #675c47;
 margin: 10px;
 margin: 10px 10px 0px 10px;
 height: 108px;
}

To fix the spacing between the header and the columns, and the footer and the columns,
all we have to do is change the bottom margin of the header to be 0px and the top margin
of the footer to be 0px. We currently specify all four sides of margin with the shortcut rule
margin: 10px in the rules for both the header and the footer, so instead, we’ll expand
that margin property to specify each side separately so we can specify 10px for all sides
except the one next to the columns. Like this:

Instead of having 10px on all sides of the
header, we now have 10px on all sides
except the bottom side, which has 0px.

Likewise, we now have 10px of margin on
all sides of the footer except the top.

A final test drive of
our table display
With this change, our columns are now perfect!
We have 10px of spacing between all the pieces
and the columns line up evenly, even if you
expand or narrow the browser window.

While display: table won’t always be the
right tool for your layout needs, in this case, it’s
the best solution to get two even columns of
content in the Starbuzz page.

Perfect!

you are here 4 519

layout and positioning

<div id="drinks">
 <h1>BEVERAGES</h1>
 <p>House Blend, $1.49</p>
 <p>Mocha Cafe Latte, $2.35</p>
 <p>Cappuccino, $1.89</p>
 <p>Chai Tea, $1.85</p>
 <h1>ELIXIRS</h1>
 <p>
 We proudly serve elixirs brewed by our friends
 at the Head First Lounge.
 </p>
 <p>Green Tea Cooler, $2.99</p>
 <p>Raspberry Ice Concentration, $2.99</p>
 <p>Blueberry Bliss Elixir, $2.99</p>
 <p>Cranberry Antioxidant Blast, $2.99</p>
 <p>Chai Chiller, $2.99</p>
 <p>Black Brain Brew, $2.99</p>
</div>

#drinks {
 _________________________;
 background-color: #efe5d0;
 width: 20%;
 padding: 15px;
 vertical-align: top;
}

The Starbuzz CEO has decided to add a
drinks menu column to the Starbuzz Coffee
web page. He wants the new column to go
on the left side, and be 20% of the width of
the browser window. Your job is to add the
new HTML to the existing page in the correct
position, and then finish up the CSS below to
make sure it displays as a table cell, like the
other two columns do. Check your solution at
the end of the chapter.

The HTML for the menu

The new CSS…you need to finish it up!

Fill in this blank to get the
drinks <div> to display as
the first column in the page.

Here's how the CEO wants the
Starbuzz page to look with
the new column on the left
containing the drinks menu.

520 Chapter 11

questions about css table display

Q: So, I know we’re not covering HTML tables until
later in the book, but is the CSS display: table similar
to using HTML tables?

A: It is similar in the sense that you’re creating
structure in your HTML that you can map to the rows
and columns of a table. But unlike HTML tables, CSS
display-table is all about presenting the content in that
structure using a table-like layout. HTML tables are for
tabular data: data that should be structured as a table. So,
using CSS display-table is a way of creating a certain kind
of presentation layout, while HTML tables are all about
structuring your data. You’ll learn all about HTML tables in
Chapter 13.

Q: What do I do if I need more than one row in my
table display?

A: If you need to display content in multiple rows, then
you just add more HTML structure to support that. If you
take a look at the Starbuzz HTML, you’ll see we have two
columns (or three, after you add the Beverages column)
in one row. To add another row, you’d add another
<div> similar to the “tableRow” <div>, nested inside the
“tableContainer” <div>, and containing the same number
of columns as the first row. You can keep adding rows by
adding more <divs> like this.

Q: Why did we add the vertical alignment to each
cell in the CSS with vertical-align: top?

A: We added vertical-align: top to each table cell to
make sure that all the content aligns with the top of the
cell. If each cell is aligned this way, then the content in
each of our Starbuzz page columns should align at the top,
which makes for a more professional-looking presentation.
If you don’t add a vertical alignment, you may find the
default alignment in your browser is set to middle instead.
In some cases, that might be what you want, of course!
You can set the vertical alignment to top, middle, or bottom.

Q: Does it matter how much content I put in a cell?

A: Not really. You’ll probably want to make sure that
no one column has so much more content than other
columns that your page looks unbalanced, but ultimately,
it’s up to you and how you want your page to look.

Q: Can we control the width of the columns?

A: Yes, you have some control over the width of the
columns with the width property. In the exercise to add
the Beverages column that you just did, you probably
noticed that we set the width of the column to 20%. You
can set the width of each column like this (and it’s a good
idea to make sure the widths add up to 100%!). By using
percentages, your table will still expand and contract
appropriately as you resize the browser window.

you are here 4 521

layout and positioning

Strategies for your CSS layout toolbox
As you’ve seen, there are a variety of methods you can use to lay out your
pages using HTML and CSS. And we didn’t have to change the HTML much
to change the layout of the page; other than moving a piece of content around
(for handling the floating sidebar), and adding a couple of <div>s (for the
table display layout), you handle the presentation of your content entirely with
your CSS. That’s really the idea: your HTML should be all about structuring
your content, and the CSS is what handles the layout. Which method you
choose for doing that layout is up to you and is going to depend on the kind of
layout you choose and how flexible you want it to be.

Let’s review.

The Floating Layout

We used float to lay out the lounge page and float the elixirs
<div> to the right of the main content in the page. In this case,
float was perfect because we wanted the main content to flow
around the elixirs <div>, which it did just beautifully. We haven’t
used it this way yet, but float also works great for floating
images within a paragraph of text, and having the text flow
around the image.

We then used float to float the sidebar <div> in the Starbuzz
page, and used clear to make sure that the floating sidebar
didn’t overlap with the footer.

The big downside is that we have to move the entire <div> we’re
floating above the main content of the page, which isn’t always
optimal if that ordering doesn’t reflect the relative importance of
the content in the page. Another potential downside is that it’s
impossible to create two equal columns of content with float,
so if that’s your goal, you’ll need another solution.

The Jello Layout

Float works great for the
lounge page; it’s okay for
Starbuzz, but we’d like to
keep the sidebar content
below the main content
and have equal columns.

Next we created a frozen layout by wrapping a fixed-size
<div> around all the content in the page, and then we made it
jello by allowing the margins to expand with the auto property
value. This makes for a great-looking layout, and lots of pages
on the Web use this design; for instance, you’ll see a lot of blogs
set up this way. This also solved the problem of our content
ordering. The disadvantage here is that the content doesn’t
expand to fill the entire browser window (which many people
don’t find to be a disadvantage at all).

Jello gives you a
nicely centered,
fixed-size area
of content
with expandable
margins.

522 Chapter 11

overview of layout techniques

The Absolute Layout

The Table Display Layout

Strategies for your CSS layout toolbox (continued)

We then used absolute positioning to get back to a liquid
layout, and this also allows us to keep our content in the order we
want. By setting the sidebar to a specific width, and positioning it
to the right of the main content, we have a main content area that
expands and contracts with the size of the page, and a sidebar that
stays fixed in size and is anchored to the right side of the browser
window. This is a great choice for layouts when you want one
part of your page to be fixed in size and one part to expand and
contract, or when you need an element to be located at a precise
location (we’ll see how to do that shortly!).

The downside for the Starbuzz page, however, is that the sidebar
overlaps the footer again when the browser is wide. So we
continued in our quest for two perfect columns, and moved on to…

With the table display layout, we hit the jackpot of layouts for
Starbuzz. We did have to add a couple of <div>s to our HTML
structure to get it to work right, but that paid off with two perfectly
aligned columns that expand and contract beautifully with the size
of the browser window.

In this case, the structure we added to the page was purely in
support of the layout; it didn’t add any meaning to the page. You’ll
find that <div> is often used that way (and in fact, when you get to
the next chapter, you’ll see this is even more true today than it was
just a few years ago). But don’t go <div> crazy; you want to pick
the best layout for your needs and add as few <div>s as necessary
to get the layout you want.

Table display layout isn’t always the right choice for layout, but for
Starbuzz, it works perfectly and even let us easily expand to add a
third column for the Beverages menu. Nice!

There are as many page designs on the Web as there are
designers, but many of those designs are based on the layouts
you’ve learned about here (or some variation of these). You
now have several strategies in your layout toolbox to choose
from, so you’re in good shape to handle just about any layout
job your boss might throw at you!

Absolute gives you a nice
liquid main content area
with a fixed sidebar.

Table display is easy to expand
to more columns (or rows!).

With table display,
we got the even
columns we wanted.

you are here 4 523

layout and positioning

Hey, the site is looking great, and
I really like the CSS table layout, but I
noticed that the header at the top with

the logo and the slogan doesn’t expand with
the page. I mean, it feels like the slogan
should move to the right if I expand my

browser window.

Except for the header, the Starbuzz page expands nicely as you
make your browser window wider. Thanks to the CSS table
layout, the columns expand proportionally as you expand the
window, and because the footer text is centered, the footer always
looks like it’s in the middle of the page, whether the page is
wide or narrow. But the header doesn’t expand as nicely. The
background color does, but the Starbuzz slogan always seems
stuck in the same place, while you might expect that it would be
anchored to the right side of the window.

The reason the header isn’t expanding with the rest of the page
is because the header is one image with both the Starbuzz logo
and the slogan in it. And that image is exactly 800px wide. If
your browser window is opened wider than 800px, you see a lot
of extra space over on the right. And likewise, if your browser
window is narrower than 800px, you’ll see the image fall off the
side of the browser window.

Can we fix it?

Yup, we agree.

524 Chapter 11

fix the header image layout

When the browser window is more than
800px wide, you get all this extra space
over here to the right.

Problems with the header
Go ahead and play with the page a bit by opening your browser window wider than the
header image, and then narrower than the header image. You’ll see that the header isn’t
working quite like we’d like it to yet.

And when the browser is narrower than 800px
wide, the slogan part of the header image falls
off the edge of the browser window!

The rest of the page resizes nicely as you
widen and narrow the browser window.

If we split the header image into two different images, one with the logo and one with the slogan,
can you think of ways you might lay out the two images in the <div id=“header”> element so
they are positioned correctly (that is, the logo stays on the left of the header, while the slogan is
always anchored to the right part of the header, even if you open up your browser window)?

We can easily split the header into two
gif images (they both have a transparent
background with a matte that works
perfectly with our coffee-colored
background color in the header).

you are here 4 525

layout and positioning

Fixing the header images with float
It’s often true that there are multiple strategies to solving a layout problem with CSS,
and that’s certainly the case here. The way we’re going to solve it is to use float. You
already used float once, to lay out part of the Starbuzz page, before we switched to
using the CSS table layout. But there’s no reason you can’t mix and match different
strategies, like table display with float in the same page; in fact, it’s very common. So
let’s take a look at how we’re going to do this.

We already did this for you; you’ll find the images “headerLogo.gif ”
and “headerSlogan.gif ” in the “chapter11/starbuzz/images” folder.

Split the header image into two images1 headerLogo.gif

headerSlogan.gif

Next, you need to update your HTML to replace the existing header
image, which is one big 800-pixel-wide image, with the two images
we created in Step 1. We’ll go ahead and give each image an id that
we’ll use to select each of them in our CSS.

Update your HTML to use these images2

<div id="header">

 <img id="headerLogo"
 src="images/headerLogo.gif" alt="Starbuzz Coffee logo image">
 <img id="headerSlogan"
 src="images/headerSlogan.gif"
 alt="Providing all the caffeine you need to power your life.">
</div>

Finally, you need to get the images laid out in the header correctly. If
you load the page now, you’ll see both images in the header, right next
to each other over on the left side of the page.

Fix the images with CSS3

But now, the slogan image is right next to the logo
image. We need to move it over here with CSS.The logo image looks okay where it is…

526 Chapter 11

testing the header image

This CSS is so easy you could probably do it in your sleep, after all the layout experience you’ve
had in this chapter already. Go ahead and write the CSS to fix the images in the header. You
know you’re going to use float; fill in the blanks below with the rest of the rule you need to get
the images into the right place. Check your answer at the end of the chapter before you go on.

______________________ {
 float: ________;
}

Test drive your float
Get your CSS updated in “starbuzz.css” and reload the
Starbuzz page. You should see the header slogan image
all the way over on the right side of the page, just where it
should be, and, better yet, it stays over on the right even if
you open your browser really wide. Success!

Now the slogan image is all the way over on
the right, and it stays there, even if you
change the browser window size.

How float works in the header

Remember the steps for how to float an element from
earlier in the chapter:

Give the element an identity. We gave the image we
wanted to float the id “headerSlogan”. Check.

Give the element a width. We didn’t actually have
to do that explicitly this time (although you could). Why?
Because an image element has a specific width by default:
it’s the width of the image itself. CSS recognizes that the
image has a width, so we don’t have to specify it ourselves.

Float the element. Check, we floated it. The is
nested in the “header” <div>, so it floats up to the top
right of the <div>. But remember, we set the height of
the header to be exactly the same as the height of our two
images. And, as we explained before, the other inline content in the
page will flow around the floated element. In this case, the other
inline content in the header is the logo image, which happens to also
be exactly the same height as the slogan image and the header. So
the two images line up perfectly!

you are here 4 527

layout and positioning

Q: Why didn’t we have to add “clear:
right” to the “tableContainer” <div>
below the header?

A: Because the image we floated is the
same exact height—108px—as the other
image in the header, so there’s no room for
the other content in the page to move up and
flow around the floated image. Both images
take up the exact same amount of vertical
space, so the other elements in the page
stay firmly in their places.

Q: What if I float an image that’s in a
paragraph of text?

A: Then the text will flow around the
image. It works just like when we floated the
elixirs <div> in the lounge; remember how
the text in the rest of the page flowed around
that <div>? Same thing if you float an image.

Q: Could we have positioned the
header images using one of the other
layout strategies we talked about?

A: Yes, indeed. There is usually more
than one way of doing things in CSS.
Another strategy might have been to use
absolute positioning. We’ll look at how to
absolutely position an image next.

Hey guys! Starbuzz just won the
Roaster of the Year Award. This is

huge. Can we get it on the page front and
center? All our customers need to see this.

Top priority; make it happen!

The award

Well, we could just throw
this as an image into any old
paragraph on the page, but
the CEO really wants this
to be noticeable on the page.
What if we could place the
award on the page like this?

Not only does that look great,
but it’s exactly what the
CEO wants. But how? Is this
another situation for using
float? Or are we going to
need another strategy?

528 Chapter 11

more absolute positioning

<div id="award">
 <img src="images/award.gif"
 alt="Roaster of the Year award">
</div>

The <div>
contains the
image of the
award.

Notice that the award is sitting in a position that overlaps both the header
and the main part of the page. It would be pretty tricky to get a floated
image into this position. Not only that, but we know the award shouldn’t
affect the flow of any other elements in the page.

This sounds like a job for absolute positioning. After all, by using absolute
positioning you can place it anywhere you want on the page, and since it
isn’t in the flow it won’t affect any other element on the page. Seems like an
easy addition to make to the page without disrupting what’s already there.

Let’s give it a try. Start by adding a new <div>, just below the header (the
CEO thinks this is pretty important, so it should be up high in the order of
content). Here’s the <div>:

Positioning the award

#award {
 position: absolute;
 top: 30px;
 left: 365px;
}

We want the award to sit just about in the middle of the page when
the browser’s open to 800 pixels (a typical size for browser widths) and
just overlapping the main content <div>.

So we’re going to use the top and left properties to position the
award 30 pixels from the top, and 365 pixels from the left.

We’re using an absolute position
for the award <div> that is 30
pixels from the top and 365
pixels from the left.

Add this CSS to your “starbuzz.css” file, save, and reload the web page.
You’ll see the award image appear like magic, right where we want it.
Make sure you resize the browser to see how the award displays.

Adding the award

you are here 4 529

layout and positioning

Q: Seems like absolute positioning is
better than float because I have more control
over where the elements go. Should I prefer
absolute positioning over floating?

A: Not really; it just depends on what you
need. If you really need an element to appear
at a precise position in the page, then absolute
positioning is the way to go. But if you want to,
say, have text flow around an image, you can’t
easily do that with absolute positioning; in that
case, you’ll definitely want to use float. You’ll find
uses for both fairly regularly.

Q: I was playing with a couple of absolutely
positioned <div> elements, and one always is
displayed on top of the other. Is there a way I
can change which one is on top?

A: Yes, every positioned element has what
is called a “z-index,” which is the ordering of the
elements on an imaginary z-axis (think of it as
pointing out of your screen). You use it like this:

 #div1 {
 position: absolute;
 top: 30px;
 left: 30px;
 z-index: 0;
 }
 #div2 {
 position: absolute;
 top: 30px;
 left: 30px;
 z-index: 1;
 }

Those rules would place the element with id “div2”
on top of the element with an id “div1”.

Q: How do I know what z-index each
element on the page is by default?

A: You don’t really, unless you inspect the
CSS the browser computes for each element in
the page with developer tools. But most of the
time you won’t care about the z-index of elements
unless you are specifically layering them or you
run into a situation like we did with the award.
Usually just setting the z-index to 1 is good
enough to make sure an element is above other
elements in the page, but if you have multiple
elements you are positioning and layering yourself,
you’ll have to be a little more deliberate about the
z-index values.

Q: Is there a maximum z-index value?

A: Yes, but it’s a very large number, and
practically, you’ll never need your z-index values
to go that high.

Q: What about negative z-index values, can
you have z-index values of, say, –1?

A: Yes, you can! The same rules apply (that is,
the more positive and larger the value, the higher
the layer, and the closer it is to you on the screen).

Q: Can any element have a z-index?

A: No, only elements that have been
positioned with CSS using absolute, relative, or
fixed positioning. You’ll see an example of fixed
positioning next!

530 Chapter 11

we need fixed positioning

Hey, can we get a coupon on the
site and put it right in customers’
faces so they can’t miss it? I’d
like to offer one free coffee to

everyone who clicks on the coupon—
for a limited time, of course.

Why? Because it’s going to give us the
opportunity to try a little fixed positioning.
This is the last kind of positioning we’re
going to use in the chapter, so let’s make it
fun. What we’re going to do is put a coupon
on the page that always stays on the screen,
even if you scroll. Is this a great technique to
make your users happy? Probably not, but
work with us here…it is going to be a fun way
to play with fixed positioning.

Just the words we’ve been
waiting for: “right in the
customer’s face.”

you are here 4 531

layout and positioning

How does fixed positioning work?

#coupon {
 position: fixed;
 top: 300px;
 left: 100px;
}

Compared to absolute positioning, fixed positioning is pretty
straightforward. With fixed positioning, you specify the position of an
element just like you do with absolute positioning, but the position is
an offset from the edge of the browser’s window rather than the page.
The interesting effect this has is that once you’ve placed content with
fixed positioning, it stays right where you put it and doesn’t move,
even if you scroll the page.

So, say you have a <div> with an id of “coupon”. You can position
the <div> fixed to a spot 300 pixels from the top of the viewport, and
100 pixels from the left side, like this:

Impress friends and coworkers by
referring to the browser window as
the viewport. Try it—it works, and
the W3C will nod approvingly.

30
0

pix
els

100
pixels

Here’s the id selector
for the coupon <div>. We’re using fixed

positioning.

Position the coupon 300 pixels
from the top, and 100 pixels
from the left. You can also use
right and bottom, just like with
absolute positioning.

Once you’ve got an element positioned, then comes the fun: scroll
around…it doesn’t move. Resize the window…it doesn’t move.
Pick up your monitor and shake it…it doesn’t move. Okay, just
kidding on the last one. But the point is, fixed-position elements
don’t move; they are there for good as long as the page is displayed.

Now, we’re sure you’re already thinking of fun things to do with
fixed positioning, but you’ve got a job to do. So let’s get that
coupon on the Starbuzz page.

Here’s where the element gets
positioned within the viewport.

div id=“coupon”

532 Chapter 11

adding a new div

Putting the coupon on the page

#coupon {
 position: fixed;
 top: 350px;
 left: 0px;
}

#coupon a, img {
 border: none;
}

 <div id="coupon">

 </div>

Now we’re going to get the Free Coffee Coupon on the page.
Let’s start by creating a <div> for the coupon to go into:

Here’s the <div> with an id of “coupon”.
Inside we’ve got an image of the coupon, which you’ll
find in the “chapter11/starbuzz/images” folder.

And we’ve wrapped the image in an <a> element so that users can click
on the image to be taken to a page with a coupon they can print.

Go ahead and add this <div> at the bottom of your “index.html” file, just
above the footer. Because we’re going to position it, the placement in the
HTML will only matter to browsers that don’t support positioning, and the
coupon isn’t important enough to have at the top.

Now let’s write the CSS to position the coupon:

We’re setting the coupon to fixed positioning, 350
pixels from the top of the viewport, and let’s put the
left side right up against the edge of the viewport. So
we need to specify 0 pixels from the left.

We need to style the image and the links, too; otherwise,
we may have borders popping up on the image because
it is clickable. So, let’s set the border on the image to
none, and do the same on the links. We’re using the same
property for both, so we can combine the rules into one.

Remember that we have a rule in the CSS that says to turn off text-
decoration, and use a border to underline links instead. Here, we’re
overriding that rule for the link in the coupon <div> and saying we
don’t want any border on the link. Go back and look at the original CSS
if you need to remind yourself of the other rules for the links.

you are here 4 533

layout and positioning

Putting the coupon on the page
Add the new coupon rules to your “starbuzz.css” file,
save, and then reload the page. You may need to make
the browser smaller to be able to see that the coupon
stays put even when you scroll. Clicking on the coupon
should take you to the “freecoffee.html” page.

You know, this looks great, but it might just be even more
snazzy if the coupon was offset to the left, so it looks like
it’s coming out of the side of the viewport. Now, we could
get into our photo editing software and cut off the left
side of the image to create that effect. Or we could just
use a negative offset so that the left side of the image is
positioned to the left of the edge of the viewport. That’s
right, you can do that.

#coupon {
 position: fixed;
 top: 350px;
 left: -90px;
}

By specifying -90 pixels,
we’re telling the browser to
position the image 90 pixels
to the left of the edge of
the viewport.

35
0

pix
els

-90
pixels

Using a negative left property value
Specify a negative property value just like you do a positive one:
just put a minus sign in front. Like this:

The browser will gladly position the
image to the left of the viewport
for you, and only the part of the
image that is still on the screen
will be viewable.

div id=“coupon”

534 Chapter 11

test drive and comparison

A rather positive,
negative test drive
Make sure you’ve put in the negative left property
value, save, and reload the page. Doesn’t that look
slick? Congrats, you’ve just achieved your first CSS
special effect. Watch out, George Lucas!

Can you believe how good this
site looks? I mean, look at where
it started compared to now. Okay,
but we’ve still got our work cut out
for us. I’ve got big ideas…I want to
start a blog, and we need to build

the Bean Machine!

WOW! What a difference!

Just remember, using fixed
positioning to cover up your

content is not the most
user-friendly thing to do,
but it is FUN.

you are here 4 535

layout and positioning

 {
 margin-top: 140px;
 margin-left: 20px;
 width: 500px;
}

 {
 position: absolute;
 top: 20px;
 left: 550px;
 width: 200px;
}

 {
 float: left;
}

 {
 position: absolute;
 top: 20px;
 left: 20px;
 width: 500px;
 height: 100px;
}

Time to put all this knowledge about floating and absolute positioning
to the test! Take a look at the web page below. There are four elements
with an id. Your job is to correctly match each of these elements with
the CSS rules on the right, and fill in the correct id selector for each
one. Check your answers at the end of the chapter.

Fill in the selectors to
complete the CSS.

div id=“header” div id=“navigation”

div id=“main”

img id=“photo” p

536 Chapter 11

more questions about positioning

Q: The fixed coupon is cool, but
kind of annoying. Is there another
way we could position it so it doesn’t
overlap content, say at the bottom of the
Beverages column?

A: Sure. You could position the coupon at
the bottom of the Beverages column using
something called relative positioning. We
didn’t cover this kind of positioning, but it’s
similar to absolute except that the element
is left in the flow of the page (where it
would normally be), and then shifted by
the amount you specify. You can shift the
element using top, left, bottom, or right, just
like with absolutely positioned elements.
So, let’s say you wanted the coupon below
the drinks in the Beverages column: you’d
move the coupon so it’s nested in the

“drinks” <div> at the bottom, and then set the
position property to relative. After that, it’s
up to you to put the coupon precisely where
you want it; you could position it 20px below
the drinks with top: 20px, and hanging off
the left side of the page with left: –90px (just
like we did with fixed).

Q: So the four kinds of positioning are
static, absolute, fixed, and relative?

A: That’s right. Static is what you get by
default if you don’t specify any positioning. It
leaves everything to flow as normal into the
page. Absolute takes an element completely
out of the flow of the page and allows you to
position it at an absolute position relative to
the closest positioned parent element (which
is <html> unless you specify one yourself);
fixed positions an element at a specific, fixed
position relative to the browser window;
and relative positions an element relative
to its containing element by leaving it in the
normal flow, and then shifting it over by an
amount you specify.

You can also use these positioning
techniques together. For instance,
remember how we said the absolutely
positioned elements are positioned relative
to the closest positioned parent? You could
absolutely position a <div> within another
<div> by positioning the outer <div> with
relative (leaving it in the flow), and then
positioning the inner <div> with absolute,
allowing you to position it relative to the
parent <div>.

As you can see, there is a huge variety in
the ways you can position elements with
CSS positioning.

Q: Could you position an element
completely off screen if you wanted?

A: Yes! For instance, the coupon image is
283 pixels wide, so if you set the left position
to –283px, the coupon would disappear. It’s
still there on the page; it’s just not visible in
the viewport. Remember, the viewport is the
visible area of the page.

Q: What if we want to animate
elements, like if we wanted to show the
coupon sliding into the page from the
left? Is that possible with CSS?

A: Actually, it is, and we’re glad you
asked. It’s beyond the scope of this book
to get into CSS animation, but CSS3
introduced basic animation for elements with
the transform and transition features, which
is exciting for us web geeks. It’s fairly limited,
but you can do some pretty cool things with
CSS animation. If you want more than what
you can do with CSS, you’ll have to use
JavaScript, and that’s a whole other topic.
We give you a brief introduction to CSS
transforms and transitions in the appendix
just to whet your appetite.

you are here 4 537

layout and positioning

 � Browsers place elements in a page using flow.

 � Block elements flow from the top down, with a linebreak
between elements. By default, each block element takes
up the entire width of the browser window.

 � Inline elements flow inside a block element from the top
left to the bottom right. If more than one line is needed,
the browser creates a new line, and expands the
containing block element vertically to contain the inline
elements.

 � The top and bottom adjacent margins of two block
elements in the normal page flow collapse to the size of
the larger margin, or to the size of one margin if they are
the same size.

 � Floated elements are taken out of the normal flow and
placed to the left or right.

 � Floated elements sit on top of block elements and don’t
affect their flow. However, the inline content respects the
boundaries of a floated element and flows around it.

 � The clear property is used to specify that no floated
elements can be on the left or right (or both) of a block
element. A block element with clear set will move down
until it is free of the block element on its side.

 � A floated element must have a specific width set to a
value other than auto.

 � A liquid layout is one in which the content of the page
expands to fit the page when you expand the browser
window.

 � A frozen layout is one in which the width of the content
is fixed, and it doesn’t expand or shrink with the browser
window. This has the advantage of providing you more
control over your design, but at the cost of not using the
browser width as efficiently.

 � A jello layout is one in which the content width is fixed,
but the margins expand and shrink with the browser
window. A jello layout usually places the content in the
center of the page. This has the same advantages as
the frozen layout, but is often more attractive.

 � There are four values the position property can be set
to: static, absolute, fixed, and relative.

 � Static positioning is the default, and places an element
in the normal flow of the page.

 � Absolute positioning lets you place elements anywhere
in the page. By default, absolutely positioned elements
are placed relative to the sides of the page.

 � If an absolutely positioned element is nested within
another positioned element, then its position is relative
to the containing element that is positioned.

 � The properties top, right, bottom, and left are used
to position elements for absolute, fixed, and relative
positioning.

 � Absolutely positioned elements can be layered on top of
one another using the z-index property. A larger z-index
value indicates it is higher in the stack (closer to you on
the screen).

 � Fixed-position elements are always positioned relative
to the browser window and do not move when the page
is scrolled. Other content in the page scrolls underneath
these elements.

 � Relatively positioned elements are first flowed into
the page as normal, and then offset by the specified
amount, leaving empty the space where they would
normally sit.

 � With relative positioning, left, right, top, and bottom refer
to the amount of offset from the element’s position in the
normal flow.

 � CSS table display allows you to lay out your elements in
a table-like layout.

 � To create a CSS table display, use a block element
for the table, block elements for the rows, and block
elements for the cells. Typically, these will be <div>
elements.

 � Table display is a good layout strategy for multicolumn
layouts where even columns of content are needed.

538 Chapter 11

test your skills

HTMLcross
This has been a turbo-charged chapter, with lots to learn. Help it all sink in by doing
this crossword. All the answers come from the chapter.

Across
4. State between liquid and frozen.
6. Method browser uses to position static elements on the
page.
7. This kind of offset was used on the coupon for a special
effect.
10. Usually used to identify an element that is going to be
positioned.
11. When boxes are placed on top of each other, these
collapse.
12. When you place two inline elements next to each other,
their margins don’t ________.
15. Absolute positioning is relative to the positioned

________ block.
16. Inline elements are flowed from the top ________.
17. A positioning type that keeps elements in the flow.

Down
1. Special inline elements that get grouped together into
boxes as the page is laid out.
2. Use ______________ to create space between cells in a
table display.
3. Block elements are flowed top to ________.
5. Type of positioning that is relative to the viewport.
6. Removes element from the flow, and sets it to one side.
8. In general, ________ is a better technique for column
layouts.
9. Another name for the browser window.
12. Property used to fix footer overlap problems.
13. Inline content flows around ________ elements.
14. Property that describes the layering behavior of
positioned elements.

1 2

3 4 5

6

7 8 9

10

11

12

13

14

15

16 17

Across
4. State between liquie and frozen.
6. Method browser uses to position

static elements on the page.
7. This kind of offset was used on

the coupon for a special effect.
10. Usually used to identify an element

that is going to be positioned.
11. When boxes are placed on top of

each other, these collapse.
12. When you place two inline elements

next to each other, their margins
don't _____.

15. Absolute positioning is relative to
the positioned ____ block.

16. Inline elements are flowed from
the top ______.

Down
1. Special inline elements that get

grouped together into boxes as the
page is laid out.

2. Use ______ to create space
between cells in a table display

3. Block elements are flowed top to
_____.

5. Type of positioning that is relative
to the viewport.

6. Removes element from the flow,
and sets it to one side.

8. In general ____ is a better
technique for column layouts.

9. Another name for the browser
window.

you are here 4 539

layout and positioning

div

Each block element
in your “lounge.
html” file is flowed
from top to bottom,
with a linebreak in
between.

Some of these elements
have nested block
elements in them, like the
, the elixirs <div>, and
the footer <div>.

We didn’t ask you
to, but if you
went the extra
mile, here’s how
the elements in
the elixirs <div>
get flowed.

p

p

p

p

p

p

p

Here’s your page. Flow
the block elements in
“lounge.html” here.

h1

div

div

h2

p

p

p

p

p

p

p

h2

h3

h3

h3

ul

BE the Browser Solution
Open your “lounge.html” file and locate
all the block elements. Flow each one
on to the page below. Just concentrate

on the block elements
nested directly inside
the body element. You
can also ignore the “float”
property in your CSS

because you still don’t know what it
does. Here’s the solution.

540 Chapter 11

exercise solutions

Move the elixirs <div> back to its original
place below the main recommendations,
then save and reload the page. Where
does the element get floated now?
You should see the elixirs below the
main content and beside the music
recommendations and the footer.

The <div> is floated
to the right, just
below the main
content, and the
remainder of the
HTML is floated
around it (which is the
music recommendations
and the footer).

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 280px;
 float: right;
}

15 + 15 + 280 + 0 + 0 + 10 + 10 = 330

lef
t p

ad
din

g

rig
ht

 pa
dd

ing

con
te

nt
 ar

ea

lef
t b

ord
er

rig
ht

 bo
rd

er

rig
ht

 m
arg

in

lef
t m

arg
in

What we want to do is set a right margin on the main content section so that
it’s the same width as the sidebar. But how big is the sidebar? Well, we hope
you aren’t already rusty since the last chapter. Here’s all the information you
need to compute the width of the sidebar. And here’s the solution.

you are here 4 541

layout and positioning

<div id="tableContainer">
 <div id="tableRow">
 <div id="drinks">
 <h1>BEVERAGES</h1>
 <p>House Blend, $1.49</p>
 <p>Mocha Cafe Latte, $2.35</p>
 <p>Cappuccino, $1.89</p>
 <p>Chai Tea, $1.85</p>
 <h1>ELIXIRS</h1>
 <p>
 We proudly serve elixirs brewed by our friends
 at the Head First Lounge.
 </p>
 <p>Green Tea Cooler, $2.99</p>
 <p>Raspberry Ice Concentration, $2.99</p>
 <p>Blueberry Bliss Elixir, $2.99</p>
 <p>Cranberry Antioxidant Blast, $2.99</p>
 <p>Chai Chiller, $2.99</p>
 <p>Black Brain Brew, $2.99</p>
 </div>
 <div id="main">
 ...

#drinks {
 ____________;
 background-color: #efe5d0;
 width: 20%;
 padding: 15px;
 vertical-align: top;
}

The Starbuzz CEO has decided to add a drinks menu
column to the Starbuzz Coffee web page. He wants
the new column to go on the left side, and be 20% of
the width of the browser window. Your job is to add the
new HTML to the existing page in the correct position,
and then finish up the CSS below to make sure it
displays as a table cell, like the other two columns do.
Here's our solution.

The new CSS…you need to finish it up!

To get the drinks <div> to display
as the first column in the page, we
set the display to table-cell.

Here's how the CEO wants the
Starbuzz page to look with
the new column on the left
containing the drinks menu.

We added the HTML inside the
“tableRow" <div>, above the “main”
<div> so the content comes first and
is the first column in the page (and
the first cell in the table layout).

display: table-cell

542 Chapter 11

exercise solutions

 {
 margin-top: 140px;
 margin-left: 20px;
 width: 500px;
}

 {
 position: absolute;
 top: 20px;
 left: 550px;
 width: 200px;
}

 {
 float: left;
}

 {
 position: absolute;
 top: 20px;
 left: 20px;
 width: 500px;
 height: 100px;
}

#header

#navigation

#main

#photo

Time to put all this knowledge about floating and positioning to the
test! Take a look at the web page below. There are four elements with
an id. Your job was to correctly match each of those elements with the
CSS rules on the right, and fill in the correct id selector for each one.
Here’s the solution. Did you get them all correct?

Fill in the selectors to
complete the CSS.

div id=“header” div id=“navigation”

div id=“main”

img id=“photo” p

you are here 4 543

layout and positioning

HTMLcross Solution

This CSS is so easy you could probably do it in your sleep, after all the layout experience you’ve
had in this chapter already. Go ahead and write the CSS to fix the images in the header. You
know you’re going to use float; fill in the blanks below with the rest of the rule you need to get
the images into the right place. Here’s our solution.

______________________ {
 float: ________;
}

#header img#headerSlogan
right

You could also just use #headerSlogan here as the selector if you want.

T1 B2

B3 J4 E L L O F5

F6 L O W X R I
L T T D X
O T N7 E G A T8 I V9 E
A O R A I10 D
T M11 A R G I N S B E

P L W
C12 O L L A P S E P

F13 L C D O
L E I I R Z14

C15 O N T A I N I N G S T I
A R G P N
T L D

L16 E F T R17 E L A T I V E
D Y X

Across
4. State between liquie and frozen.

[JELLO]
6. Method browser uses to position

static elements on the page.
[FLOW]

7. This kind of offset was used on
the coupon for a special effect.
[NEGATIVE]

10. Usually used to identify an element
that is going to be positioned. [ID]

11. When boxes are placed on top of
each other, these collapse.
[MARGINS]

Down
1. Special inline elements that get

grouped together into boxes as the
page is laid out. [TEXT]

2. Use ______ to create space
between cells in a table display
[BORDERSPACING]

3. Block elements are flowed top to
_____. [BOTTOM]

5. Type of positioning that is relative
to the viewport. [FIXED]

6. Removes element from the flow,
and sets it to one side. [FLOAT]

8. In general ____ is a better
technique for column layouts.
[TABLEDISPLAY]

544 Chapter 11

exercise solutions

This is the first column.

This is the
first and
only row.

In this table, we have
one row and two columns,
for a total of two cells.

In each cell, we can place a
block element. We can use
the existing <div>s in the
Starbuzz page as the cells.

Notice again that the
table expands and shifts
to accommodate different
widths and heights, and our
columns are even. That’s what
we want for Starbuzz!

<div id=“main”> <div id=“sidebar”>

Given what you know about CSS table displays, sketch out how our two
columns from the Starbuzz page would fit into a table. Check the answer
at the end of the chapter before moving on…

this is a new chapter 545

So, we’re sure you’ve heard the hype around HTML5. And,

given how far along you are in this book, you’re probably wondering if you made the

right purchase. Now, one thing to be clear about, up front, is that everything you’ve

learned in this book has been HTML, and more specifically has met the HTML5

standard. But there are some new aspects of HTML markup that were added with

the HTML5 standard that we haven’t covered yet, and that’s what we’re going to do

in this chapter. Most of these additions are evolutionary, and you’re going to find you

are quite comfortable with them given all the hard work you’ve already done in this

book. There’s some revolutionary stuff too (like video), and we’ll talk about that in this

chapter as well. So, let’s dive in and take a look at these new additions!

We’re the first
on the block to move up to

HTML5…the salesman told us
it was more refined and shinier

than HTML4.01.

html5 markup12

Modern HTML

546 Chapter 12

thinking about html structure

Before we learn even more markup, let’s step back for a second…we’ve talked a
lot about structure, but are <div>s really good structure? After all, the browser
doesn’t really know your <div id="footer"> is a footer, it just knows it is a
<div>, right? That seems rather unsatisfying, doesn’t it?

Much of the new HTML5 markup is aimed at recognizing how people
structure their pages with <div>s and providing markup that is more
specific, and better suited for certain kinds of structure. You see, when the
browser (or search engines, or screen readers) see id="navigation" in your
page, they have no idea your <div> is for navigation. It might as well say
id="goobledygoop".

So, the standards bodies actually took a look at how <div> elements were
being used—for headers, navigation, footers, articles, and so on—and they
added new elements to represent those things. That means with HTML5 we
can rework our pages a bit and replace our <div>s with elements that more
specifically identify the kind of content contained in them.

Think about the way you’ve seen <div>s used. Also, check out a few web pages
and see how they are using <div>s. Let’s say you wanted to take the most
common patterns and change the <div>s into real HTML elements. For instance,
you could change all the <div id="footer"> elements to just <footer> elements.
Make a list of all the new elements you’d add to HTML. Of course, you won’t
want to add too many, just enough to cover the most common uses. Also note
any advantages (or disadvantages) of adding these new elements:

Rethinking HTML structure

you are here 4 547

html5 markup

<article>

<nav>

<header>

<footer>

<time>

<aside>

<section>

<video>

Sure, we could just tell you about the new HTML5 elements, but wouldn’t it be more fun to figure
them out? Below, you’ll find the new elements to the left (these aren’t all the new elements, but
you’ll find the more important ones here); for each element, match it with its description to the right:

Can contain a date or time or both.

Contains content meant for navigation
links in the page.

Used to add video media to your page

Content that goes at the bottom of the
page, or the bottom of a section of the
page.

Contains content that is supplemental to
the page content, like a callout or sidebar.

Content that goes at the top of the page,
or the top of a section of the page.

A thematic grouping of content, typically
with a header and possibly a footer.

Represents a self-contained composition in
a page, like a blog post, user forum post,
or newspaper article.

548 Chapter 12

reviewing the starbuzz page

Modern Starbuzz
Starbuzz Coffee is a modern, hip company, so shouldn’t they be using
the latest and greatest markup in their pages? Let’s take a look at
where they might be missing out on opportunities to use HTML5:

Starbuzz uses a <div> with
id=“header" for the heading.

Here's a <div> with id=“footer"
for the footer. That one seems
pretty obvious since we have a
footer element.

They use a <div> with
an id=“main" for the
main, center column.

Here's a <div> with an
id=“sidebar” for the
right column.

Here's a <div> with
an id=“drinks” for
this left column.

One note: for this
chapter, we’ve removed
the award and the
coupon so we can focus
on the big-picture
structure.

Could we use a header element

here to make the structure

more obvious?

This really feels like
secondary content;
can this be an aside on
the page?

This content is all
related; is there a
better way?

We can definitely think
of that as the main
content area of the
page, or maybe we should
say, a main section.

And the main
content area is
made up of a set
of, well, almost
articles about
various aspects of
Starbuzz.

you are here 4 549

html5 markup

<div id=“footer”>

Using everything you know so far about the new HTML5 elements, see if you can
rework the Starbuzz page to make use of them. Go ahead and just mark out and
scribble on this page.

<div id=“header”>

<div id=“drinks”> <div id=“main”> <div id=“sidebar”>

We’re not showing the super-detailed structure of the page,
so for now just focus on this large-grained structure.

550 Chapter 12

playing with html5

We can use the <header> element for our
header <div>; that's pretty straightforward!

And we can use the <footer>
element for our footer.

<footer>

<header>

<section id=“drinks”> <section id=“main”> <aside>

The sidebar is really
peripheral content; we
can place that in an
aside element, given
that's exactly what
the <aside> is for.

Each of these
“sections” groups
together a set of
related content;
that’s just what the
<section> element
is for.

Using everything you know so far about the new HTML5 elements, see if you can
rework the Starbuzz page to make use of them. Go ahead and just mark out and
scribble on this page.

you are here 4 551

html5 markup

Update your Starbuzz HTML
Let’s go ahead and add these new elements to your Starbuzz HTML, starting with the <header>,
<footer>, and <aside> elements. We’ll come back and look at the <section> element in a bit, but
for now you can just leave the drinks and main content <div>s as they are. Go ahead and open up the
Starbuzz “index.html” file and make the following changes:

Start by replacing the <div id="header"> with a <header> element. Like this:

Add the header element1

<div id="header">
<header>
<img id="headerLogo"
 src="images/headerLogo.gif" alt="Starbuzz Coffee logo image">
<img id="headerSlogan"
 src="images/headerSlogan.gif" alt="Providing all the...">
</header>
</div>

Remove the <div> tags and replace
them with <header> tags.

Do the same for the <div id="footer">, only replace it with a <footer> element:

Add the footer element2

<div id="footer">
<footer>
 © 2012, Starbuzz Coffee

 All trademarks and registered trademarks appearing on
 this site are the property of their respective owners.
</footer>
</div>

Now let’s change the “sidebar” <div> to an <aside> element:

Change the sidebar to an aside3

<div id="sidebar">
<aside>
 <p class="beanheading">

 ...
 </p>
 <p>
 ...
 </p>
</aside>
</div>

We decided to save a few trees (or bits) by abbreviating the
content a little; just make sure you keep all the original content in
the page and change the <div> tags to <aside> tags.

552 Chapter 12

test driving sections and aside

No worries; we just got ahead of ourselves. The
page doesn’t look right because we changed the
HTML, but we never reworked the CSS. Think
about it like this: we had a bunch of <div>s
with ids that the CSS was relying on and some
of those <div>s aren’t there anymore. So, we
need to rewrite the CSS to target the new
elements instead of those old <div>s. Let’s do
that now.

We’ve got a bit more to rework, but doesn’t your
HTML already feel somehow newer, cleaner, more
modern? Go ahead and do a test drive by loading
your page in your browser.

Test driving the new ride

Uh oh…looks like
things didn’t
work so well.

What happened? You had
me all talked into this

HTML5 stuff. That page
doesn’t look so good.

you are here 4 553

html5 markup

Older browsers do not support the new elements in HTML5 you’ll be using in this chapter.
The elements we’re using in this chapter are new to HTML5 and aren’t well supported in older browsers (such as IE8 and earlier, Safari 3 and earlier, etc). If you are concerned that your web page might be used by people who are still using these old browsers, then don’t use these new elements yet.

Mobile browsers in smartphones, like Android and iPhone, support these new elements, so if your primary audience target is mobile users, you’re good to go!

Check http://caniuse.com/#search=new%20elements for updates on browser support of the elements in this chapter.

Before you continue…

554 Chapter 12

styling the new elements

How to update your CSS for the new elements
Let’s update the CSS to reflect our new elements. Don’t worry; we’ve already got all
the basics correct in the CSS file. All we need to do is change the selectors a bit:

body {
 background-color: #b5a789;
 font-family: Georgia, "Times New Roman", Times, serif;
 font-size: small;
 margin: 0px;
}
#header {
header {
 background-color: #675c47;
 margin: 10px 10px 0px 10px;
 height: 108px;
}
#header img#headerSlogan {
header img#headerSlogan {
 float: right;
}

...

#sidebar {
aside {
 display: table-cell;
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 vertical-align: top;
}
#footer {
footer {
 background-color: #675c47;
 color: #efe5d0;
 text-align: center;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 font-size: 90%;
}
...

All right, that’s all we need to do; let’s give it another try, and this
time you should see the page is back to normal. In fact, it should
look exactly like it did before we add the HTML5 markup.

Test drive #2 Ahh…much better.

First, remove the # mark from the header rules.
We're going from targeting a <div> with an id of

“header" to an element named header.

Here we need to change this from targeting an
element with an id of “sidebar" to an aside element.

Finally, we need to
select the footer
element.

Saving some trees…just imagine the
rest of the CSS here.

you are here 4 555

html5 markup

Ah, my old pal, HTML4.01. You had a good run,
but now I’m here.

I’m just getting started.

Sure, people are beginning to use them. Remember,
they aren’t going to change the world, they just
make explicit what web developers have been doing
all along.

I’m thinking more about <div> here…

I’m not talking about getting rid of <div>. Yeah,
he’s great for grouping content together for styling
and stuff, but what if you want to, say, identify
some content as an article on your page? Or break
your page into sections?

A good run? Take a look at the Web; it is still a sea
of HTML4.01.

Yeah? And how are those new elements going? I
haven’t seen many of them out there.

How is <p> not explicit? Hello? That’s a paragraph.
Can’t get more explicit than that.

There’s nothing wrong with <div>. Leave him
alone.

You know as well as I do that everyone is confused
about how to use those elements, and you can do
both those things with a <div>.

HTML5 HTML4.01

Tonight’s talk: HTML5 and HTML4.01 mix it up

What’s the point of adding the new HTML5 markup if it has no visual effect on the page?

556 Chapter 12

discussing html versions

HTML5 HTML4.01

Yes, you can do it with a <div>, but with, say, an
<article> element, the browser, search engines,
screen readers, and your fellow web developers all
know for sure that’s an article.

Remember, we use the right element for the job,
right? That way we can communicate the most
explict structure we can, and all our tools can do
the right thing.

See, that is just exactly where you are wrong. Take
the <aside> element, which is for marking up
supplementary content on a page. Now on a
mobile phone with limited screen space, if the
browser knows that content is an <aside>, you
might see that content pushed to the bottom so that
you see more important content first. If the content
is in <div> instead, then any number of things can
happen depending on where in the HTML file the
content is.

Now the browser can know the difference between
the main content in the page and an <aside>. So
it can treat the content in the <aside> differently.
For instance, a search engine might prioritize the
main content in the page over the content in an
<aside>.

No, no, this applies to all the new HTML markup:
header, footer, sections, articles, time, and so on.

So? It still looks the same.

Right thing? Like what? Display it exactly the
same?

I still don’t see what the big deal is.

Great, so with HTML5 we know how to deal with
asides.

Well, I think it is about time you take that footer of
yours and stuff it in

CENSORED
CENSORED
CENSORED

Note to editor: they got out of
hand—can we get them back to
redo the end of the chat?

CENSORED

you are here 4 557

html5 markup

You’ve already replaced the “header”, “footer”, and “sidebar”
<div>s with the <header>, <footer>, and <aside> elements. Now
you need to replace the “drinks” and “main” <div>s with <section>
elements and also update your CSS. Leave all the table-display
<div>s in place for now; we still need those to keep the page laid
out correctly.

<div id="tableContainer">
 <div id="tableRow">
 <div id="drinks">
 ...
 </div>
 <div id="main">
 ...
 </div>
 <aside>
 ...
 </aside>
 </div> <!-- tableRow -->
</div> <!-- tableContainer -->

#drinks {
 display: table-cell;
 background-color: #efe5d0;
 width: 20%;
 padding: 15px;
 vertical-align: top;
}

#main {
 display: table-cell;
 background: #efe5d0
 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 vertical-align: top;
}

Go ahead and scratch out the HTML and
CSS below and write in what you need for
adding the <section> element.

The HTML without the
<section> element

The CSS as it is now for
#drinks and #main.

Do you still need the ids for these sections? If so, why?

CENSORED

558 Chapter 12

fix the style of the sections

The HTML with the
<section> element

The CSS updated for
the two sections

<div id="tableContainer">
 <div id="tableRow">
 <section id="drinks">
 ...
 </section>
 <section id="main">
 ...
 </section>
 <aside>
 ...
 </aside>
 </div> <!-- tableRow -->
</div> <!-- tableContainer -->

section#drinks {
 display: table-cell;
 background-color: #efe5d0;
 width: 20%;
 padding: 15px;
 vertical-align: top;
}

section#main {
 display: table-cell;
 background: #efe5d0 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 vertical-align: top;
}

All we did was replace
<div>s with <section>s
for “drinks” and “main”.

We left the ids there
because we need to be
able to uniquely identify
each <section> to style it.

We could have left the CSS exactly as it was! Because we are using ids, the same two elements would have been targeted with the existing rules. We went ahead and added the tag name in front of the id selector just to make it clear we’re using <section>s here.

And here’s the page! Looks
exactly the same, but don’t
you feel better knowing
you’ve got new HTML5
elements in place?

You’ve already replaced the “header”, “footer”, and “sidebar”
<div>s with the <header>, <footer>, and <aside> elements. Now
you need to replace the “drinks” and “main” <div>s with <section>
elements and also update your CSS. Leave all the table-display
<div>s in place for now; we still need those to keep the page laid
out correctly.

Here’s our solution:

you are here 4 559

html5 markup

Hey, I’m starting a blog. Can
we use any of these new HTML5
elements to build it? I want to make

sure I’m using the latest and greatest
stuff…it’s going to be super popular, just

like our coffee.

Interesting you should ask, because many of the
new HTML5 elements are perfect for creating
a blog. Before we get into the actual markup,
though, let’s think about what a blog might look
like, making sure we keep it consistent with the
current Starbuzz design. To do that, we’ll create
a new page with the same “drinks” <section>
on the left, and the same <aside> on the right,
and all we’ll change is the content in the middle
to be the blog. Let’s check it out:

Here’s what the finished
blog page will look like.

We’ve got a nice navigation
menu below the header…

And the main content
area now has several blog
posts in it.

The rest of the page
is the same.

560 Chapter 12

playing more with html5 elements

Your job is to choose the elements you think will work the best for the new blog. Fill in the
blanks in the diagram below to show which elements you would choose. Note that each blog
post will have a heading and at least one paragraph of text.
Choose your elements from the list below:

<header>
<footer>
<article>
<nav>
<time>

<aside>
<section>
<div>
<h1>
<p>

The new blog page. It’s like the
home page, except the middle
section is now blog posts and
we have a navigation menu
below the header.

<footer>

<header>

<section
id=“drinks”>

<______________> <aside>

<___________>
<___________>

<___________>

<___________>

<___________>

<___________>

<___________>

<___________>

<___________>

<__________>

you are here 4 561

html5 markup

<header>
<footer>
<article>
<nav>
<time>

<aside>
<section>
<div>
<h1>
<p>

<footer>

<header>

<section
id=“drinks”>

<section id= “blog”> <aside>

<h1>
<p>

<article>

<h1>
<p>

<article>

<h1>
<p>

<article>

<nav>

The new blog page. It’s like the
home page, except the middle
section is now blog posts and
we have a navigation menu
below the header.

We put the blog “section”
of the page in a <section>
element because <section>
is used to group related
content together.

We put each blog post in
its own <article> element
because each blog post is a
self-contained item (that
is, you could take articles
away without affecting the
readability of the ones you
left behind).

We used the <nav> element
for the navigation menu.

Your job is to choose the elements you think will work the best for the new blog. Fill in the
blanks in the diagram below to show which elements you would choose. Note that each blog
post will have a heading and at least one paragraph of text.
Choose your elements from the list below:

562 Chapter 12

using the article element

Building the Starbuzz blog page
From the previous exercise, you know that we’re using a <section> element for the blog section (in
the middle column) and an <article> element for each blog post. Let’s get started doing that, and
we’ll come back to navigation in a bit. We’ve already created the “blog.html” file for you by making a
copy of the file “index.html”, and replacing the “main” <section> with a “blog” <section>. You
can get the complete “blog.html” from the code downloads for the book; here’s part of it:

<section id="blog">

 <article>

 <h1>Starbuzz meets social media</h1>

 <p>

 Here at Starbuzz we're embracing the social media craze. In fact,
we're going further than any of our competitors and we're very close…

 </p>

 <p>

 Sound like science fiction? It's not; I'm already testing our final
prototype social network cup as I write this…

 </p>

 <p>

 So, keep your eyes out for this amazing new cup. And I'll be
releasing a video teaser soon to tell you all about this new invention,
straight from Starbuzz Coffee.

 </p>

 </article>

 <article>

 <h1>Starbuzz uses computer science</h1>

 <p>

 ...

 </p>

 </article>

 <article>

 <h1>Most unique patron of the month</h1>

 <p>

 ...

 </p>

 </article>

</section>

We’re using a <section> element for the
middle column, just like we did for “main” in
the index.html file.

Each blog post gets its own
<article> element.

And within each <article>, we use <h1> for
the heading, and <p> for the paragraphs of
text. Pretty simple! But more meaningful
than a bunch of <div>s, right?

Get the full blog post text from the “blog.html” file you
downloaded from wickedlysmart.com.

We’re only showing
part of each blog
post here.

you are here 4 563

html5 markup

Setting up the CSS for the blog page
You might have noticed that both the “index.html” file and the “blog.html” file
link to the same CSS file, “starbuzz.css”. Let’s take a quick look at “blog.html”:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Starbuzz Coffee - Blog</title>
 <link rel="stylesheet" type="text/css" href="starbuzz.css">
 </head>
 ...

Here's the link to the CSS…
…and while we're here, go ahead and
update the title of the page.

Now, we haven’t yet added any CSS to target our new section with an id of
“blog”, so let’s do that now. We know we want the “blog” <section> to be
styled exactly like the “main” <section> on the home page, so we can just
reuse the same rule by adding the rule for the blog section to the existing rule
for the main section, like this:

section#main, section#blog {
 display: table-cell;
 background: #efe5d0 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 vertical-align: top;
}

We can use the same rule for both <section> elements by using
the two selectors separated by a comma. This says, apply all
these properties to both of the selected elements.

That’s it! All the other styling we need for the “blog” <section> of the page is
already in the CSS, and we’re not adding any special styling for <article>. So
it’s time to…

Even though the two elements, the “main” <section> and the “blog” <section>, are on two different pages, this will work because both pages link to the same CSS file.

564 Chapter 12

testing article

Test drive the
blog page
With the creation of a new blog
page, and those quick tweaks
to the page (that is, adding the
<section> and <article>
elements), let’s save the page
and load it in the browser.

What’s the difference
between a section and an

article?

Yes, it can be confusing. We’ll tell you right up front
that there is no crystal-clear answer to this; in fact, there are
many ways to use <article> and <section>. But here is
a general way to think about them: use <section> to group
together related content, and use <article> to enclose a self-
contained piece of content like a news article, a blog post, or a
short report.

In the Starbuzz page, each column contains related content,
so we’ve treated each column as a section of the page. We’ve
also taken the individual blog posts and made those articles
because they are self-contained (you could even imagine taking
one and reposting it on another site or blog).

Your mileage may vary, but in general, stick to grouping
related content together with <section>, and for self-
contained content, use <article>. And if you need to group
content together that doesn’t feel as related, you always have
<div> to fall back on.

As you can see, elements like <section>, <article>,
and <aside> have a similar default style to <div>;
that is, not much! But they do add information
about the meaning of the content in your page.

you are here 4 565

html5 markup

Let’s take a closer look at the <time> element. It has an important
attribute, datetime, and the element’s kind of picky about the values you
use in this attribute, so it’s worth going over some of the details.

<time datetime="2012-02-18">2/18/2012</time>

The datetime attribute is required
if the content of the element isn't
written using the official Internet
date/time format.

If you're using the datetime attribute to specify a date and/or a time, then you can write whatever you want as the content for the element. Most often, that will be some date- or time-related text, like “February 18, 2012” or even “yesterday” or “now”.

This is the official Internet format
for specifying dates with a day,
month, and year. 2012-02

2012

2012-02-18 09:00

2012-02-18 18:00

05:00

2012-02-18 05:00Z

You can specify just a year and month,
or even just a year.

You can add on a time, in
24-hour format.

You can specify just a time.
If you use a “Z” after
the date and time, then it
means UTC time. (UTC = GMT)

Here are some other ways to
express dates and times using
the official format.

A two-minute guide to the <time> element

Did you notice in our blog design that we
added a date to every blog post? Before
HTML5, dates were created in an ad hoc
way—you might have just added the date
without marking it up at all, or used a
or even a <p> to mark it up. But now, we
have an element that’s perfect for the job: the
<time> element.

We still need to add a
date to the blog…

566 Chapter 12

test driving the time element

<article>
 <h1>Starbuzz meets social media</h1>
 <time datetime="2012-03-12">3/12/2012</time>
 ...
</article>
<article>
 <h1>Starbuzz uses computer science</h1>
 <time datetime="2012-03-10">3/10/2012</time>
 ...
</article>
<article>
 <h1>Most unique patron of the month</h1>
 <time datetime="2012-02-18">2/18/2012</time>
 ...
</article>

Below each heading, we’ve
added a <time> element.

The content of the time element is the
date of the blog post (written American
style, with the month first). You could also
write March 10, 2012 if you want.

We’re using the datetime attribute
of the <time> element to specify the
precise date using the official Internet
date/time format for dates.

Adding the time element to your blog
Edit your “blog.html” file, and add the following dates below each article heading:

Test drive the blog

Test drive the blog again, and you should
see the date of the blog post show up
underneath each blog post heading.

Now we have
a date below
each blog
posting.

you are here 4 567

html5 markup

It seems like semantically each
article has its own little header, with
a heading and date. I assume we could
even add things like a byline with the

author’s name and location. Is that the
right way to be using article?

It sure is. Again, think of an article as a self-
contained piece of content—something you could
even take out and syndicate to another web page
somewhere. And if you did that, you’d definitely
want to add something like a byline with who wrote
it, when, and maybe where.

We can take this even further, because the <header>
element isn’t meant just for your main header; you
can use it whenever you want to group together
items into a header. For instance, you can add the
<header> element to an <article>, a <section>,
or even an <aside>.

To see how this works, let’s go back and add some
more <header> elements to the Starbuzz articles.

Note that the footer can be used
within sections, articles, and asides
as well. We’re not going to do that
on Starbuzz, but many sites do
create headers and footers for
these elements.

568 Chapter 12

adding header elements

 ...
<section id="blog">
<article>
 <header>
 <h1>Starbuzz meets social media</h1>
 <time datetime="2012-03-12">3/12/2012</time>
 </header>
 <p>...</p>
</article>

<article>
 <header>
 <h1>Starbuzz uses computer science</h1>
 <time datetime="2012-03-10">3/10/2012</time>
 </header>
 <p>...</p>
</article>

<article>
 <header>
 <h1>Most unique patron of the month</h1>
 <time datetime="2012-02-18">2/18/2012</time>
 </header>
 <p>...</p>
</article>
</section>
 ...

How to add more header elements
Adding <header> elements is straightforward. Within each
<article> element, we’ll place a <header> to contain the
heading and time. To do that, find the <article> elements
within the blog section and add an opening and closing
<header> tag to each one.

Place your <header> element here, around
the heading and the time elements.

Feel free to add an author byline to the header as well. Hmm, there isn’t an <author> element.
Any idea how you might mark up an author byline?

Make sure you add a <header> to
each article in the blog section.

you are here 4 569

html5 markup

Hmm, did you notice when you loaded
the page that the headers of the
articles don’t look right? The
formatting is all off now…

Go ahead and add the <header> elements to the
Starbuzz blog and give it a test run.

Testing the header

Hint: take a look at your CSS and see

if there are any other <heade
r> rules

that might be affecting the new article

headers you just added.

Now that we’ve added the <header> elements, the spacing
and formatting is off; did you notice we’ve got way too much
space below the article heading and below the date, and the
background color is all wrong? Any idea why? Write your
ideas about why this might be happening below.

570 Chapter 12

fixing the header elements

So, what’s wrong with the
header anyway?
Clearly, we’ve messed up the formatting a bit by
adding the <header> elements. Why? Let’s take
another look at the “starbuzz.css” file and check
out the rule for the <header> element:

header {
 background-color: #675c47;
 margin: 10px 10px 0px 10px;
 height: 108px;
}

The rule for styling the header works
great for the main header but looks
terrible for the headers in the articles.

This header rule height property causes the
background color to be set and space to be added to ALL headers in the page, not just the main header. And the margin isn’t helping either.

<body>
 <header class="top">
 <img id="headerLogo"
 src="images/headerLogo.gif" alt="Starbuzz Coffee header logo image">
 <img id="headerSlogan"
 src="images/headerSlogan.gif" alt="Starbuzz Coffee header slogan image">
 </header>
...

We can fix this by creating a class just for the
<header> at the top of the page. We might have
several <header> elements in sections and articles
throughout the site, and in our case, for Starbuzz
Coffee, the <header> at the top of the page will
always be treated differently from these other headers
because it has a special graphical look. So, first find
the top <header> element in your “blog.html” file
and add a class named “top” to the element:

Add the class “top” to the first
<header> element in the page.

Add the “top” class to the top <header> in your “index.html” file, too.

you are here 4 571

html5 markup

Once you’ve added the “top” class to both your “blog.html” and “index.html”
files, then all you have to do is update your CSS to use the class in the selector
in the rules for the header:

header.top {
 background-color: #675c47;
 margin: 10px 10px 0px 10px;
 height: 108px;
}

header.top img#headerSlogan {
 float: right;
}

We’ve added the .top class selector
to the header rule in the CSS.

We added it to this rule too—while we don’t need to for
the selector to work correctly, it does make it more clear
in the CSS exactly which headerSlogan we’re selecting. Just
a little best-practice work.

A final test drive for the headers

Once you’ve made all the changes to your
“blog.html”, “index.html”, and “starbuzz.css”
files, reload the blog page.

Notice that now the <header> rules apply
only to the <header> at the very top of the
page, which is just what we want. Meanwhile,
the article <header>s get the default style,
which will work fine as well.

Now the headers in the articles
are formatted correctly!

572 Chapter 12

Q: We are doing a lot of work to add
elements to the page, and it looks exactly
the same as it did before! Tell me again
what all this is getting me?

A: We’ve replaced a few elements and
added a few elements, and in the process,
we’ve added a lot of meaning to our
pages. The browser, search engines, and
applications for building web pages, can—if
they want—be a lot smarter about how they
handle different parts of your page. And
your page is easier for you, and other web
developers, to read. Even though your page
looks the same, it’s a lot more meaningful
under the covers.

Q: What’s the difference between a
<section> and an <article> again? They
seem similar to me.

A: It is easy to get confused about which
element to use, so we’re glad you asked.
The <section> element is more generic than
<article>, but it’s not as generic as <div>. For
instance, if you’re just adding an element so
you can style the page, then use a <div>. If
you’re adding an element to mark up content
that forms a well-defined section of related
content, then use <section>. And if you
have some content that can be reused or
distributed independently from the rest of the
content on the page, then use <article>.

Q: Should every <section> and every
<article> always have a <header>?

A: Most of the time, your <section>s and
<article>s will have a <header>, or at least a
heading (like <h1>). Think about it: content
within an <article> element can be reused
elsewhere, so chances are, that content will

need a header for descriptive or introduction
purposes. Likewise, content with a <section>
element is a group of related content in your
page, so it will typically have some kind
of header to separate and introduce that
section of content.

Q: Should we use <header> only when
we’ve got more than one thing to put in
it? What if we’ve only got one heading
and nothing else?

A: You can use <header> even if you
have only one heading to put in it. The
<header> element provides extra semantic
meaning that separates the header of a
page, a section, or an article from the rest
of the content. However, it’s not required
that you always put your heading content in
a <header> element (that is, the page will
validate if you don’t).

Head First: Hey <div>, we heard you’ve been feeling
really down lately. What’s up?

<div>: In case you haven’t noticed, I’m being made
mostly redundant! They’re replacing me all over the place
with these new elements, <section>, <nav>, <aside>…

Head First: Hey, Element-up; after all, I still see you
in Starbuzz handling the “tableContainer” and the
“tableRow”.

<div>: They haven’t gotten rid of me completely yet,
but if they keep inventing new elements, it won’t be long
before it’s game over, man.

Head First: The last time I looked, you were still in the
HTML specification. Web developers have all sorts of
special needs for adding structure to their pages and the
standards guys (and gals) have no interest in inventing
zillions of new elements.

<div>: That’s true, and I haven’t seen any new elements

come along that are simply for creating generic structure.

Head First: Right! All these other new elements are
specifically for adding semantic meaning to pages, and
you’re much more general purpose. You’re what everyone
falls back on when they need table layout, for instance.

<div>: That’s so true!

Head First: If you ask us, you were way overworked
before these new elements came along…isn’t it time you
start enjoying your reduced workload?

<div>: You know, you make a good point. Maybe I
should close down shop for a while and see the world;
after all, I racked up a lot of frequent flyer mileage flying
around the Internet.

Head First: Hold on now, you can’t just disappear; most
of the Web is relying on you…

Head First: Hello? <div>?

A quick interview with <div>
<div>’s feeling a bit left out…

you are here 4 573

html5 markup

Being a forward-thinking
CEO, I feel better knowing we’re

making the page as semantically sound
as we can. But don’t we need some

navigation? How do I get from the home
page to the blog? And back?

We agree! Having multiple pages isn’t going
to do us much good if readers can’t navigate
between them.

And to create navigation for these pages, we’re going to use
some of the tools we already know about; namely, a list and
some anchor tags. Let’s see how that works.

First, create a set of links for our navigation:

HOME
BLOG
INVENTIONS
RECIPES
LOCATIONS

Now, wrap up those anchors in an unordered list so we can
treat them as a group of items. We haven’t done this before,
but watch how this works, and see how lists are perfect for
navigation items:

 HOME
 <li class="selected">BLOG
 INVENTIONS
 RECIPES
 LOCATIONS

Notice that each link is now an item in an
unordered list. This may not look much like
navigation, but it will when we apply some style.

Notice also that we are identifying one item as
the selected one, by using a class.

We’re leaving these three links blank because we won’t be adding
these pages, but you should feel free to create these pages!

574 Chapter 12

adding navigation to starbuzz

Adding the navigation CSS
You can try that HTML if you want, but you won’t be satisfied that it feels
anything like “navigation.” So, before you try it, let’s add some CSS:

<body>
 <header class="top">
 <img id="headerLogo"
 src="images/headerLogo.gif" alt="Starbuzz Coffee header logo image">
 <img id="headerSlogan"
 src="images/headerSlogan.gif" alt="Providing all the caffeine...">
 </header>

 HOME
 <li class="selected">BLOG
 INVENTIONS
 RECIPES
 LOCATIONS

 ...
</body>

Completing the navigation
Now place the navigation right into your HTML. Do that by
inserting it just below the header in the “blog.html” file:

ul {

 background-color: #efe5d0;

 margin: 10px 10px 0px 10px;

 list-style-type: none;

 padding: 5px 0px 5px 0px;

}

ul li {

 display: inline;

 padding: 5px 10px 5px 10px;

}

ul li a:link, ul li a:visited {

 color: #954b4b;

 border-bottom: none;

 font-weight: bold;

}

ul li.selected {

 background-color: #c8b99c;

}

Make sure and add this CSS to the

BOTTOM of your starbuzz.css file.

We’re adding a background color, and some margins and padding.
Notice that the bottom margin is 0 because the table display
already has a 10px border-spacing at the top.

Also notice that we’ve removed the bullets from the list items.

Here, we’re changing the display of each list item from “block”
to “inline”, so now the list items won’t have a carriage return
before and after; they’ll all flow into one line on the page like
regular inline elements do.

We want the links in the navigation list to look a bit different from
the rest of the links in the page, so we override the other rules for <a>
(above this rule in the CSS) with a rule that sets properties for both
the links and the visited state of the links (so they look the same).

And finally, we’re setting the background of the element
with the class “selected” so the navigation item corresponding
to the page we’re on looks different from the rest.

you are here 4 575

html5 markup

Who needs GPS? Giving
the navigation a test drive
Let’s give this a try. Go ahead and get the
CSS typed into the bottom of your CSS file,
and then load it in your browser.

Hey, not bad for a first try. We’ve got a nice
navigation bar that even has the page we’re
on—the blog page—highlighted.

But…can we take this even further? After all,
you’re in the “modern HTML” chapter and
we haven’t used a new element from HTML5
for the navigation yet. As you’ve probably
guessed, we can improve this by adding a
<nav> element to the HTML file. Doing so
will give everyone (browser, search engines,
screen readers, your fellow web developers)
a bit more information about what this list
really is…

Adding a nav element…
As you already know, there is a <nav> element, and using
it is as simple as wrapping your navigation list with <nav>
opening and closing tags, like this:

<nav>

 HOME
 <li class="selected">BLOG
 INVENTIONS
 RECIPES
 LOCATIONS

</nav>

Here’s the <nav> starting tag, and we’re enclosing
the entire navigation list within a <nav> element.

576 Chapter 12

targeting navigation list items

Before we do any more
testing, we really need to

talk about your CSS.

We should really talk about best practices. You see, right now your CSS assumes that
every unordered list is a navigational menu. So, what happens when the Starbuzz CEO
needs to add a list of new cafes he’s going to open in the blog? Disaster—he’ll probably
get a navigation list right in the middle of his blog because it will be styled just like the
navigation list we just added to the page.

But no worries; to fix this potential problem, we just need to be more specific about
targeting the navigation list items, and that’s not hard because the only navigation list
items we want to target are the ones contained within a <nav> element.

Before moving on, think through how you’d change the CSS to
specifically target the navigation items, and no other unordered lists.

you are here 4 577

html5 markup

Making our CSS more specific…

nav {
 background-color: #efe5d0;
 margin: 10px 10px 0px 10px;
}
nav ul {
 margin: 0px;
 list-style-type: none;
 padding: 5px 0px 5px 0px;
}
nav ul li {
 display: inline;
 padding: 5px 10px 5px 10px;
}
nav ul li a:link, nav ul li a:visited {
 color: #954b4b;
 border-bottom: none;
 font-weight: bold;
}
nav ul li.selected {
 background-color: #c8b99c;
}

Ta-da! Look at that navigation!
Get these changes into the CSS and give it a try. Not
bad, huh? And now we can rest assured that any future
 elements won’t be affected by the navigation CSS.
Remember, when possible, add the most specific rule
you can to style your elements.

Okay, let’s use the fact that we have a <nav> element in the HTML and make the
selectors more specific. That way, we ensure that future changes to the HTML
(such as adding a innocent element to somewhere else in the page down the
road), don’t result in any unexpected styling. Here’s how we do that…but notice that
we do have to make a few adjustments to the margins of the <nav> element so it
behaves correctly.

We’ve added a new rule for the <nav> element, and moved the
properties for setting the background color and margin into this rule,
so everything in the <nav> element gets styled with these properties.

And we’ve added a property to set the margin of the element to 0, so it fits snugly within the <nav> element (by default, elements have a margin that will cause the to be shifted over a bit if we don’t set it to 0).

Finally, for ALL these rules, we’ve added the
selector “nav” in front of them so the rules affect
ONLY elements that appear within a <nav>
element. That way, we can be sure that if the
CEO adds a to his blog in the future, it won’t
get styled like a navigation list!

Notice, we added “nav”
to both rules in this
rule with two selectors!

578 Chapter 12

getting video into the blog

Here’s the Starbuzz blog
page, complete with all our
recent improvements…

And he wants to put a
video right in the page,
just like this…

Oh, and this Tweet Sip technology is so
earth-shatteringly useful, he wants us
to assume we’re under a “friend-DA”…
we told him you’d be good with that.

Hey, if I could get you guys to stop geeking
out over your new HTML5 elements for a minute, I’ve

got some great news: we’ve just finished creating our new
Tweet Sip cups. It’s a revolutionary new technology: take
a sip of coffee and have your status updated on Twitter. I

just did a new video demonstrating it working! Can we get
it on the blog!?

you are here 4 579

html5 markup

Jim: Well, we used to need Flash for
video, but with HTML5 we now have a
<video> element we can use.

Frank: Wait, isn’t Flash still better? It’s been
around a long time.

Jim: I could see some short-term arguments for that on the
desktop, but what are you going to do on certain mobile
devices that don’t support Flash? Think of how many
mobile users Starbuzz has; some of those customers are
going to be in the dark if we use Flash.

Frank: Got it. So how do we go about using an element
to do video?

Jim: Think of video like the element; we supply
a src attribute that references the video, which is placed

in the page at the location of the <video> element.

Frank: That sounds easy enough. This is going to be a
piece of cake.

Jim: Well, let’s not promise anything too quickly. Like most
media types, video can get complicated, especially when it comes

to dealing with the encodings for video.

Frank: Encodings?

Jim: The format used to encode the video and the audio of a video clip.

Frank: That’s a big deal?

Jim: It is because the browser makers haven’t agreed on a common standard
for video encodings. But let’s come back to all that. For now, let’s get a
<video> element in our page and see what all we can do with it.

Frank: Sounds good; lead the way!

Now we’re going to have to add
video to the Starbuzz page. It
doesn’t seem like a big deal, but
aren’t we going to need a Flash

developer?

Jim Frank

580 Chapter 12

adding the video element to the blog

<article>
 <header>
 <h1>Starbuzz launches…Tweet Sip</h1>
 <time datetime="2012-05-03">5/3/2012</time>
 </header>
 <p>
 As promised, today I'm proud to announce that Starbuzz
 Coffee is launching the Tweet Sip cup, a special Starbuzz
 Coffee cup that tweets each time you take a sip! Check
 out my video of our new invention.
 </p>

</article>

 <video controls autoplay width="512" height="288" src="video/tweetsip.mp4">
 </video>

Creating the new blog entry
Let’s get started by adding a new blog entry, which in HTML-speak, should
be a new <article> element. Go ahead and add this HTML just under the
<section> element, above the other articles:

We’re going to add the video right here,
below the paragraph in the blog entry.

Add this in the “blog” <section> at the top…

And now, introducing the video element
At first blush, the <video> element really is similar to the element. In the
chapter downloads, you’ll find a file named “tweetsip.mp4” in the “video” folder.
Make sure the “video” folder is at the same level as your “blog.html” file. Then add
this markup to your page right below the closing </p> tag and before the closing
</article> tag:

Here we have the opening
video tag, with quite a
few attributes…

We’ll come back to the details of all these attributes in a sec,
but for now notice we’re setting the width and height of the
element, along with specifying a src URL for the video.

We’ll see what content we can place in here in a bit as well…
And here we have the closing tag.

you are here 4 581

html5 markup

Lights, camera, action…
Get this new markup in and give it a try! Hopefully you’ll see what we do
here, but if you don’t, keep reading—you’ll soon know how to fix it.

Here’s our video embedded in the
page right where we put it with the
correct width and height.

Did you notice the video started
autoplaying? That’s because we
supplied an “autoplay” attribute.
Just remove it, and the user will
have to click play to see the video

.

Also notice there’s a set of controls for playing, pausing, controlling volume, and so on. These are supplied if you place a “controls” attribute in your <video> element.

Not bad for a couple lines of markup, huh? But don’t rest too easy
(especially if you aren’t seeing video yet); we still have a lot to learn
about the <video> element. Let’s get started…

582 Chapter 12

video formats can cause issues

Yes, it’s probably the video format.

While the browser makers have agreed on what the
<video> element and API look like in HTML5, not
everyone can agree on the actual format of the video files
themselves. For instance, if you are on Safari, H.264
format is favored; if you’re on Chrome, WebM is favored;
and so on.

In the code we just wrote, we’re assuming H.264 as a
format, which works in Safari, Mobile Safari, and IE9+.
If you’re using another browser, then look in your “video”
folder and you’ll see three different types of video, with
three different file extensions: .mp4, .ogv, and .webm
(we’ll talk more about what these mean in a bit).

For Safari, you should already be using .mp4 (which
contains H.264).

For Google Chrome, use the .webm format by replacing
your src attribute with:

If you’re using Firefox or Opera, then replace your src
attribute with:

And if you’re using IE8 or earlier, you’re out of luck—
wait a sec; this is Chapter 12! How could you still be using
IE8 or earlier? Upgrade! But if you need to know how to
supply fallback content for your IE8 users, hang on; we’re
getting to that.

I’m not seeing any video. I’ve
triple-checked the code and
I have the video in the right

folder. Any ideas?

src="video/tweetsip.webm"

src="video/tweetsip.ogv" Give this a try to get you going; we’re coming back to all this in a bit.

By the time you
read this, these
formats could
be more widely
supported across
all browsers. So if
your video’s working,
great. Always check
the Web to see
the latest on this
unfolding topic. And
we’ll come back for
more on this topic
shortly.

you are here 4 583

html5 markup

<video controls
 autoplay
 width="512" height="288"
 src="video/tweetsip.mp4"
 poster="images/poster.png"
 id="video">
</video>

At this point, you’ve got a video up and playing on your page, but before we move
on, let’s step back and look at the <video> element and its attributes:

How does the video element work?

A little Webville good video
etiquette: the autoplay attribute

While autoplay may be the best thing for sites like YouTube
and Vimeo (or WebvilleTV, for that matter), think twice
before setting it in your <video> element. Often, users want
to participate in the decision of whether or not video is
played when they load your page.

If present, the controls attribute causes the
player to supply controls for controlling the
video and audio playback.

The autoplay attribute causes the video
to start playback upon page load.

The source location of the video

The width and height of the
video in the page

If you like, you can supply an
optional poster image to show when
the movie is not playing.

Of course, we can add an id to the
element too in case we want to
apply some styling.

Notice that the controls and
autoplay attributes are a little
different from other attributes
you’ve seen so far. They are “Boolean
attributes” that have no value. So,
for instance, if controls is there,
then the video controls will show up.
If controls is not there, then the
video controls don’t show up.

584 Chapter 12

overview of video attributes

Closely inspecting the video attributes…

src

The width and height attributes set the width and height of the
video display area (also known as the “viewport”). If you specify a
poster, the poster image will be scaled to the width and height you
specify. The video will also be scaled, but will maintain its aspect
ratio (e.g., 4:3 or 16:9), so if there’s extra room on the sides, or the
top and bottom, the video will be letter-boxed or pillar-boxed to
fit into the display area size. You should try to match the native
dimensions of the video if you want the best performance (so the
browser doesn’t have to scale in real time).

width, height

Pillar-boxing Letter-boxing

The autoplay Boolean attribute tells the
browser to start playing the video as soon
as it has enough data. For the videos we’re
demoing with, you’ll probably see them start to play almost immediately.

autoplay

The browser will typically display one frame of
the video as a “poster” image to represent the
video. If you remove the autoplay attribute,
you’ll see this image displayed before you click
play. It’s up to the browser to pick which frame
to show; often, the browser will just show the
first frame of the video…which is often black. If
you want to show a specific image, then it’s up
to you to create an image to display, and specify
it by using the poster attribute.

poster

Another Boolean attribute, loop automatically
restarts the video after it finishes playing.

loop

src is what video
file is used here.

width

height

The video player

Let’s look more closely at some of the more important
video attributes:

The controls attribute is a

Boolean attribute. It’s either

there or it’s not. If it is there, then

the browser will add its built-in

controls to the video display. The

controls vary by browser, so check

out each browser to see what they

look like. Here’s what they look

like in Safari.

controls
The src attribute is just like the element’s src—it is a URL that tells the video element where to find the source file. In this case, the source is “video/tweetsip.mp4”. (If you downloaded the code for this chapter, you’ll find this video and two others in the “video” directory).

The attribute preload is typically used for
fine-grained control over how video loads
for optimization purposes. Most of the time,
the browser chooses how much video to load,
based on things like whether autoplay is set
and the user’s bandwidth. You can override
this by setting preload to “none” (none
of the video is downloaded until the user

“plays” it), “metadata” (the video metadata is
downloaded, but no video content), or “auto”
to let the browser make the decision.

preload

src

you are here 4 585

html5 markup

I was testing on different
browsers, and the controls look

different on each one. At least
with solutions like Flash, I had
consistent-looking controls.

Yes, the controls in each
browser are different with HTML
video.

The look and feel of your controls is
dictated by those who implement the
browsers. They do tend to look different in
different browsers and operating systems. In
some cases, for instance, on a tablet, they
have to look and behave differently because
the device just works differently (and it’s a
good thing that’s already taken care of for
you). That said, we understand; across, say,
desktop browsers, it would be nice to have
consistent controls, but that isn’t a formal
part of the HTML5 spec, and in some cases,
a method that works on one OS might clash
with another OS’s user interface guidelines.
So, just know that the controls may differ,
and if you really feel motivated, you can
implement custom controls for your apps.

We do this in Head First
HTML5 Programming. Come join
us there; JavaScript is fun!

586 Chapter 12

video format overview

We wish everything were as neat and tidy as the
<video> element and its attributes, but as it turns out,
video formats are a bit of a mess on the Web. What’s
a video format? Think about it this way: a video file
contains two parts, a video part and an audio part, and
each part is encoded (to reduce size and to allow it to be
played back more efficiently) using a specific encoding
type. That encoding, for the most part, is what no one
can agree on—some browser makers are enamored with
H.264 encodings, others really like VP8, and yet others
like the open source alternative, Theora. And to make
all this even more complicated, the file that holds the video
and audio encoding (which is known as a container) has
its own format with its own name. So we’re really talking
buzzword soup here.

Anyway, while it might be a big, happy world if all
browser makers agreed on a single format to use across
the Web, well, that just doesn’t seem to be in the cards
for a number of technical, political, and philosophical
reasons. But rather than open that debate here, we’re
just going to make sure you’re reasonably educated on
the topic so you can make your own decisions about
how to support your audience.

Let’s take a look at the popular encodings out there;
right now, there are three contenders trying to rule the
(Web) world…

What you need to know about
video formats

The HTML5 specification allows for any video format.
It is the browser implementation that determines what
formats are actually supported.

Your mileage may vary by the time
you read this book, as favored
encodings tend to change over time.

WebM Container

Vp8 Video
Encoding

Vorbis Audio
Encoding

MP4 Container

H.264 Video
Encoding

AAC Audio
Encoding

Ogg Container

Theora Video
Encoding

Vorbis Audio
Encoding

There are three different
video formats in use
across the major browsers.

Each format consists of a
container type (like WebM,
MP4, and Ogg) and a video and
audio encoding (like VP8 and
Vorbis).

This is a container…

…that
contains a
video and
an audio
encoding of
the video
data.

you are here 4 587

html5 markup

VP8, the contender,
is backed by Google,
supported by others, and
coming on strong…

MP4 container with
H.264 video and AAC audio

H.264 is licensed by the MPEG-LA
group.

There is more than one kind of
H.264; each is known as a “profile.”

MP4/H.264 is supported by Safari
and IE9+. You may find support in
some versions of Chrome.

WebM was designed by Google to
work with VP8-encoded videos.

WebM/VP8 is supported by Firefox,
Chrome, and Opera.

You’ll find WebM-formatted videos
with the .webm extension.

Theora is an open source codec.

Video encoded with Theora is
usually contained in an Ogg file,
with the .ogv file extension.

Ogg/Theora is supported by
Firefox, Chrome, and Opera.

H.264 is the
industry darling,
but not the
reigning champ…

Theora is the open
source alternative.

The reality is, if you’re going to be serving content to a wide spectrum of users,
you’re going to have to supply more than one format. On the other hand, if all
you care about is, say, the Apple iPad, you may be able to get away with just one.
Today we have three main contenders—let’s have a look at them:

The video format contenders

Ogg container with
Theora video and Vorbis audio

WebM container with
VP8 video and Vorbis audio

588 Chapter 12

support for video formats

YOUR MISSI
ON:

VIDEO RECO
NNAISSANCE

GO OUT AND
 DETERMINE

 *THIS TEX
T WILL BE

CUT*

 THE CUR

RENT LEVEL
 OF SUPPOR

T FOR VIDE
O IN EACH

BROWSER

BELOW (HIN
T, HERE AR

E A FEW SI
TES THAT K

EEP UP WIT
H SUCH THI

NGS:

http://en.
wikipedia.

org/wiki/H
TML5_video

, *REDACT
A HTTP://*

http://can
iuse.com/#

search=vid
eo). ASSUM

E THE LATE
ST VERSION

 OF THE

BROWSER. F
OR EACH BR

OWSER/FEAT
URE PUT A

CHECKMARK
IF IT IS S

UPPORTED.

UPON YOUR
RETURN, RE

PORT BACK
FOR YOUR N

EXT ASSIGN
MENT!

Video

Sa
fa
ri

Ch
ro
me

Fi
re
fo
x

Mo
bi
le
 W
eb
Ki
t

Op
er
a

IE
9+

IE
8

IE
7
or
 <

H.264

WebM

Ogg

Theora

Br
ow
se
r

iOS and Android devices (among others)

you are here 4 589

html5 markup

How to juggle all those formats…
So we know it’s a messy world with respect to video format, but what to do? Depending
on your audience, you may decide to provide just one format of your video, or several. In
either case, you can use one <source> element (not to be confused with the src attribute)
per format inside a <video> element to provide a set of videos, each with its own format,
and let the browser pick the first one it supports. Like this:

<video controls autoplay width="512" height="288"

 src="video/tweetsip.mp4">

 <source src="video/tweetsip.mp4">
 <source src="video/tweetsip.webm">
 <source src="video/tweetsip.ogv">
 <p>Sorry, your browser doesn't support the video element</p>
</video>

 � The container is the file format that’s used to package up the video, audio,
and metadata information. Common container formats include: MP4,
WebM, Ogg, and Flash Video.

 � The codec is the software used to encode and decode a specific encoding
of video or audio. Popular web codecs include: H.264, VP8, Theora, AAC,
and Vorbis.

 � The browser decides what video it can decode. Not all browser makers
agree, so if you want to support everyone, you need multiple encodings.

This is what the
browser shows if it
doesn’t support video.

Notice we’re removing the src
attribute from the <video> tag…

…and adding three <source> tags, each with its own src attribute, each with a version of the video in a different format.

The browser starts at the top and

work its way down until it finds a

format it can play.

For each source, the browser loads the
metadata of the video file to see if it
can play it (which can be a lengthy process,
although we can make it easier on the
browser…see the next page).

590 Chapter 12

details of video formats

Telling the browser the location of your source files gives it a selection of
different versions to choose from; however, the browser has to do some
detective work before it can truly determine if a file is playable. You can help
your browser even more by giving it more information about the MIME type
and (optionally) codecs of your video files:

<source src="video/tweetsip.ogv" type='video/ogg; codecs="theora, vorbis"'>

This is the MIME type
of the video file. It
specifies the container
format.

The file you use in the src is a
container for the actual video (and
audio and some metadata).

The codecs parameter specifies
which codecs were used for encoding
the video and audio to create the
encoded video file.

type is an optional attribute
that is a hint to the browser to
help it figure out if it can play
this kind of file.

The video codec

The audio codec

How to be even more specific with
your video formats

Next, you’ll update your <source> elements to include the type information for
all three types of video we have.

Notice the double quotes on the codecs
parameter. This means we need to use single
quotes around the type attribute.

Take 2: lights, camera, action…
Okay, if you were having trouble seeing video, add the
markup on the previous page, and even if you weren’t
having trouble, add it anyway. Give the video another try.
Try it in a few different browsers, as well.

Now the video should be
working cross-browser!

you are here 4 591

html5 markup

Most likely, your video will play as before, but you’ll know that behind the scenes you’re
helping the browser with the additional type and codec information. If and when you do
your own video encoding, you’ll need to know more about the various options for the type
parameters to use in your source element. You can get a lot more information on type
parameters at http://wiki.whatwg.org/wiki/Video_type_parameters.

If you don’t know the codecs parameters, then you
can leave them off and just use the MIME type.
It will be a little less efficient, but most of the
time, that's okay.

<video controls autoplay width="512" height="288" >
 <source src="video/tweetsip.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
 <source src="video/tweetsip.webm" type='video/webm; codecs="vp8, vorbis"'>
 <source src="video/tweetsip.ogv" type='video/ogg; codecs="theora, vorbis"'>
 <p>Sorry, your browser doesn't support the video element</p>
</video>

The codecs for mp4 are more complicated than the other two because
h.264 supports various “profiles,” different encodings for different
uses (like high bandwidth vs. low bandwidth). So, to get those right,
you’ll need to know more details about how your video was encoded.

Q: Is there any hope of getting to one
container format or codec type in the
next few years? Isn’t this why we have
standards?

A: There probably won’t be one encoding
to rule them all anytime soon—as we said
earlier, this topic intersects with a whole host
of issues, including companies wanting to
control their own destiny in the video space
to a complex set of intellectual property
issues. The HTML5 standards committee
recognized this and decided not to specify
the video format in the HTML5 specification.
So, while in principle HTML5 supports (or is
at least agnostic to) all of these formats, it
is really up to the browser makers to decide
what they do and don’t support.

Keep an eye on this topic if video is
important to you; it will surely be an
interesting one to watch over the next few

years as this is all sorted out. And, as always,
keep in mind what your audience needs and
make sure you’re doing what you can to
support them.

Q: If I want to encode my own video,
where do I start?

A: There are a variety of video capture
and encoding programs out there, and which
one you choose is really going to depend
on what kind of video you’re capturing and
how you want to use the end result. Entire
books have been written on video encoding,
so be prepared to enter a world of all new
acronyms and technology. You can start
simple with programs like iMovie or Adobe
Premiere Elements, which include the ability
to encode your video for the Web. If you’re
getting into serious video work with Final
Cut Pro or Adobe Premiere, these software
programs include their own production tools.

And, finally, if you are delivering your videos
from a content delivery network (CDN),
many CDN companies also offer encoding
services. So you’ve got a wide variety of
choices depending on your needs.

Q: Can I play my video back
fullscreen?

A: That functionality hasn’t yet been
standardized, although you’ll find ways to do
it with some of the browsers if you search
the Web. Some of the browsers supply a
fullscreen control (for instance, on tablets)
that give the video element this capability.
Also note that once you’ve got a way to go
fullscreen, what you can do with the video,
other than basic playback, may be limited
for security reasons (just as it is with plug-in
video solutions today).

Update your <source> elements like below, and give your page a test drive:

Update and test drive

592 Chapter 12

falling back to flash video

I think Flash video is still
important, and I want to
make sure I have a fallback
if my users’ browsers don’t
support HTML5 video.

No problem.

There are techniques for falling back to another
video player if your preferred one (whether that
be HTML5 or Flash or another) isn’t supported.

Below, you’ll find an example of how to insert
your Flash video as a fallback for HTML5 video,
assuming the browser doesn’t know how to play
HTML5 video. Obviously, this is an area that
is changing fast, so please take a look on the
Web (which is updated a lot more often than a
book) to make sure you’re using the latest and
greatest techniques. You’ll also find ways to make
HTML5 the fallback rather than Flash if you
prefer to give Flash video priority.

<video poster="video.jpg" controls>
 <source src="video.mp4">
 <source src="video.webm">
 <source src="video.ogv">
 <object>...</object>
</video>

For Flash video, you need an <object> element.
Insert the <object> element inside the
<video> element below the <source> tags. If
the browser doesn't know about the <video>
element, the <object> will be used, and you’ll
see Flash video playing.

you are here 4 593

html5 markup

I just wanted to say nice job! The site is totally new and
improved, and now we can do video anytime we need to.

Umm, about that Tweet Sip cup…well, if you watched the
video, then I guess you know we’re back to the drawing
board. But don’t worry—we’re already working on a new
coffee mug with social networking, gamification, digital
scrapbooking, auto-checkin, and analytics built right in!

This one is going to be a winner, I promise!

Would you believe we’re really just getting started with video? That’s right: markup is just the first step. With HTML5, you can also create interactive experiences around video by using JavaScript.
Now, that’s far beyond the scope of this book (unless you want to carry around a 1,400-page book), so after you’ve finished this book, pick up Head First HTML5 Programming (by your all-time favorite Head First authors, of course), and take this all to the next level.

594 Chapter 12

a taste of other new elements

Here are a bunch of elements you
know, and a few you don’t, that

are all new in HTML5.
Remember, half the fun of HTML

is experimenting! So make
some files of your own and try

these out.

<mar
k>

<nav>

<article>

<meter>

<fig
ure

>

<header>

<time>

This element is for highlighting
bits of text. Almost as good as
that ink highlighter!

Use this for sections with
headers, or the header of
the whole document.

This element is to define self-
contained content like a photo, a
diagram or even a code listing.

The time element is a time,
a date, or a date-time (like
January 21st at 2am).

Need to display a measurement in a range? Like a thermometer that goes from 0 to 212, and shows it’s 90 degrees outside? Hot!

For marking up content like
news articles or blog posts
that are self-contained
content.

<vid
eo>

Want a video in your page?
You need this element.

Use this element to
group together links
that are used for
navigation in your site.

<canvas>

This is used to di
splay

graphics and ani
mations drawn

with JavaScript in you
r page.

<aside>

Use this element for content that’s aside from the main content, like a sidebar or a pullquote.
<footer>

This element defines the
footer of a section or a
whole document.

<audio>Use this for including
sound content in
your page.

<section>Use this element to define
the major sections of your
document.

<progress>

Need to show progress
on a task? Like 90%
done? Use this element.

Element
Soup

you are here 4 595

html5 markup

 � HTML5 added several new elements to
HTML.

 � <section>, <article>, <aside>, <nav>,
<header>, and <footer> are all new
elements to help you structure your page,
and add more meaning than if you use
<div>.

 � <section> is for grouping related content.

 � <article> is for self-contained content
like blog posts, forum posts, and news
articles.

 � <aside> is for content that is not central
to the main content of the page, such as
callouts and sidebars.

 � <nav> is for grouping site navigation links.

 � <header> groups content such as
headings, logos, and bylines that typically
go at the top of a page or section.

 � <footer> groups content such as
document information, legalese, and
copyright that typically go at the bottom of
a page or section.

 � <time> is also a new element in HTML5. It
is used to mark up times and dates.

 � <div> is still used for structure. It is often
used to group elements together for
styling purposes or to create structure for
content that doesn’t fit into one of the new
structure-related elements in HTML5.

 � Older browsers don’t support new HTML5
elements, so be sure you know the
browsers your primary audience will be
using to access your web page, and don’t
use the new elements until you’re sure
they will work for your audience.

 � <video> is a new HTML element for
adding video to your page.

 � A video codec is the encoding used to
create the video file. Popular codecs
include h.264, Vp8, and Theora.

 � A video container file contains video,
audio, and metadata. Popular container
formats include MP4, OGG, and WebM.

 � Provide multiple video source files to be
sure your audience can view your video
files in their browsers.

596 Chapter 12

is your left brain working?

HTMLcross
There are lots of new ideas and new elements in this chapter. Do the crossword
to help make it all stick. All the answers come from the chapter.

Across
3. A _______ attribute is one that doesn’t have a specified
value.
6. The TweetSip cup measures coffee in _______.
7. The design of the Starbuzz page has a main content

_______.
8. Specify a date in the _________ attribute of the <time>
element.
11. The _________ in the Starbuzz blog had the wrong style
until we added the “top” class.
12. A browser doesn’t know that <div id=“footer”> means
________.
13. Use _______ selectors in your CSS to make sure you
don’t get unintended styling.
14. The <section> element is used to group _________
content.

Down
1. The Starbuzz CEO made a video about the __________
cup.
2. Browser makers can’t agree on video __________.
4. A section can have a header and a _______.
5. You’d probably use this element for a sidebar.
9. Your local newspaper might use this kind of element to
mark up its news articles.
10. The ______ tag is used for specifying multiple video files.
11. You can use a _______ at the top of the page, or at the
top of a section or article.

1

2

3

4 5

6

7

8 9

10 11

12

13

14

Across
3. A _______ attribute is one that

doesn’t have a specified value.
6. The TweetSip cup measures coffee

in _______.
7. The design of the Starbuzz page

has a main content _______.
8. Specify a date in the _________

attribute of the <time> element.
11. The _________ in the Starbuzz

blog had the wrong style until we
added the “top” class.

12. A browser doesn’t know that <div
id=”footer”> means ________.

13. Use _______ selectors in your
CSS to make sure you don’t get
unintended styling.

14. The <section> element is used to
group _________ content.

Down
1. The Starbuzz CEO made a video

about the __________ cup.
2. Browser makers can’t agree on

video __________.
4. A section can have a header and a

_______.
5. You’d probably use this element for

a sidebar.
9. Your local newspaper might use this

kind of element to mark up its
news articles.

10. The ______ tag is used for
specifying multiple video files.

11. You can use a _______ at the top
of the page or the top of a section
or article.

you are here 4 597

html5 markup

<article>

<nav>

<header>

<footer>

<time>

<aside>

<section>

<video>

Can contain a date or time or both.

Contains content meant for navigation links in
the page.

Used to add video media to your page.

Content that goes at the bottom of the page, or
the bottom of a section of the page.

Contains content that is supplemental to the
page content, like a callout or sidebar.

Content that goes at the top of the page, or the
top of a section of the page.

A thematic grouping of content, typically
with a header and possibly a footer.

Represents a self-contained composition in
a page, like a blog post, user forum post, or
newspaper article.

Sure, we could just tell you about the new HTML5 elements, but wouldn’t it be more fun to figure
them out? Below, you’ll find the new elements to the left (these aren’t all the new elements, but
you’ll find the more important ones here); for each element, match it with its description to the right:

Solution

598 Chapter 12

exercise solutions

YOUR MISSI
ON:

VIDEO RECO
NNAISSANCE

GO OUT AND
 DETERMINE

 *THIS TEX
T WILL BE

CUT*

 THE CUR

RENT LEVEL
 OF SUPPOR

T FOR VIDE
O IN EACH

BROWSER

BELOW (HIN
T, HERE AR

E A FEW SI
TES THAT K

EEP UP WIT
H SUCH THI

NGS:

http://en.
wikipedia.

org/wiki/H
TML5_video

, *REDACT
A HTTP://*

http://can
iuse.com/#

search=vid
eo). ASSUM

E THE LATE
ST VERSION

 OF THE

BROWSER. F
OR EACH BR

OWSER/FEAT
URE PUT A

CHECKMARK
IF IT IS S

UPPORTED.

UPON YOUR
RETURN, RE

PORT BACK
FOR YOUR N

EXT ASSIGN
MENT!

Video

Sa
fa
ri

Ch
ro
me

Fi
re
fo
x

Mo
bi
le
 W
eb
Ki
t

Op
er
a

IE
9+

IE
8

IE
7
or
 <

H.264

WebM

Ogg

Theora

Br
ow
se
r

iOS and Android devices (among others)

some

SOLUTION

Android

iOS

you are here 4 599

html5 markup

HTMLcross Solution

T1

F2 W
B3 O O L E A N

F4 A5 R E
O S M6 L T

S7 E C T I O N I A S
T D8 A9 T E T I M E

S10 H11 E A D E R S P
F12 O O T E R T

U A I
R D S13 P E C I F I C
C E L
E R14 E L A T E D

Across
3. A _______ attribute is one that

doesn’t have a specified value.
[BOOLEAN]

6. The TweetSip cup measures coffee
in _______. [ML]

7. The design of the Starbuzz page
has a main content _______.
[SECTION]

8. Specify a date in the _________
attribute of the <time> element.
[DATETIME]

11. The _________ in the Starbuzz
blog had the wrong style until we
added the “top” class. [HEADERS]

12. A browser doesn’t know that <div
id=”footer”> means ________.
[FOOTER]

Down
1. The Starbuzz CEO made a video

about the __________ cup.
[TWEETSIP]

2. Browser makers can’t agree on
video __________. [FORMATS]

4. A section can have a header and a
_______. [FOOTER]

5. You’d probably use this element for
a sidebar. [ASIDE]

9. Your local newspaper might use this
kind of element to mark up its
news articles. [ARTICLE]

10. The ______ tag is used for
specifying multiple video files.
[SOURCE]

11. You can use a _______ at the top
of the page or the top of a section
or article. [HEADER]

this is a new chapter 601

If it walks like a table and talks like a table… There comes a time

in life when we have to deal with the dreaded tabular data. Whether you need to

create a page representing your company’s inventory over the last year or a catalog

of your vinylmation collection (don’t worry, we won’t tell), you know you need to do

it in HTML, but how? Well, have we got a deal for you: order now, and in a single

chapter we’ll reveal the secrets that will allow you to put your very own data right

inside HTML tables. But there’s more: with every order we’ll throw in our exclusive

guide to styling HTML tables. And, if you act now, as a special bonus, we’ll throw in

our guide to styling HTML lists. Don’t hesitate; call now!

tables and more lists13

Getting Tabular

602 Chapter 13

something new from tony

Hey guys, I just created this
little table of the cities in my journal.
I was going to put it on the website, but
I couldn’t find a good way to do it with
headings or blockquotes or paragraphs.

Can you help?

City Date Temperature Altitude Population Diner Rating

Walla Walla, WA June 15 75 1,204 ft 29, 686 4/5

Magic City, ID June 25 74 5,312 ft 50 3/5

Bountiful, UT July 10 91 4,226 ft 41, 173 4/5

Last Chance, CO July 23 102 4,780 ft 265 3/5

Consequences, NM August 9 93 4,242 ft 7, 289 5/5

Why, AZ August 18 104 860 ft 480 3/5

Truth or

you are here 4 603

tables and more lists

How do you make tables with HTML?
Tony’s right; you really haven’t seen a good way of using HTML to represent
his table data, at least not yet. You do know there’s a way to use CSS and
<div>s to create a table-like layout (with CSS table display), but that’s for layout
(presentation) purposes, and isn’t related to the content itself. Here, we’ve got
tabular data that we want to mark up with HTML. Luckily, HTML has a <table>
element to take care of marking up tabular data. Before we dive into the <table>
element, let’s first get an idea of what goes into a table:

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75 1,204 ft 29,686 4/5

Magic City, ID June 25th 74 5,312 ft 50 3/5

Bountiful, UT July 10th 91 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th 93 4,242 ft 7,289 5/5

Why, AZ August 18th 104 860 ft 480 3/5

We have columns…

And we
have rows…

And this row
has headings.

We call each piece of data a cell,
or sometimes just table data.

If they put you in charge of HTML, how would you design one or more
elements that could be used to specify a table, including headings, rows,
columns, and the actual table data?

604 Chapter 13

an html table

Creating a table with HTML
Before we pull out Tony’s site and start making changes, let’s get the table
working like we want it in a separate HTML file. We’ve started the table and
already entered the headings and the first three rows of the table into an HTML
file called “table.html” in the “chapter13/journal/” folder. Check it out:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <style type="text/css">
 td, th {border: 1px solid black;}
 </style>
 <title>Testing Tony's Travels</title>
</head>
<body>
 <table>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 <tr>
 <td>Walla Walla, WA</td>
 <td>June 15th</td>
 <td>75</td>
 <td>1,204 ft</td>
 <td>29,686</td>
 <td>4/5</td>
 </tr>
 <tr>
 <td>Magic City, ID</td>
 <td>June 25th</td>
 <td>74</td>
 <td>5,312 ft</td>
 <td>50</td>
 <td>3/5</td>
 </tr>
 </table>
</body>
</html>

We use a <table> tag to start the table.

Each <tr>
element forms
a table row.

Each <th> element is a table heading for a column.

Notice that the table headings are listed one
after each other. While these look like they
might make up a column in the HTML, we are
actually defining the entire table headings row.
Look back at Tony’s list to see how his headings
map to these.

Here’s the first row, which we start with a <tr>.

Each <td> element holds one cell of the
table, and each cell makes a separate column.

And here’s the third
row. Again, the <td>
elements each hold one
piece of table data.

This is just a small bit of CSS
so we can see the structure of
the table in the browser. Don’t
worry about this for now.

Here’s the start of the second row, which is
for the city Walla Walla.

All these <td>s make up one row.

you are here 4 605

tables and more lists

What the browser creates
Let’s take a look at how the browser displays this HTML table. We’ll warn you now:
this isn’t going to be the best-looking table, but it will look like a table. We’ll worry
about how it looks shortly; for now, let’s make sure you’ve got the basics down.

Here’s how the browser
displays the table HTML.

Finishing typing in the “Testing Tony’s Table” HTML from the previous page (we started
it in “table.html”, but you need to finish it). Typing this in, while tedious, will help get the
structure of the <table>, <tr>, <th>, and <td> tags in your head. When you finish, give it
a quick test, and then add the remaining items from Tony’s table. Test that too.

We’ve got three rows total,
including the headings…

…and six columns, just
what we expected.

Each <td> is in
its own cell…

…and each <th> is in a cell
as well. It looks like the
browser displays headings
in bold by default.

606 Chapter 13

tables up close

Tables dissected
You’ve seen four elements used to create a
single table: <table>, <tr>, <th>, and <td>. Let’s
take a closer look at each one to see exactly
what role it plays in the table.

The <table> tag starts the whole thing
off. When you want a table, start here.

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75 1,204 ft 29,686 4/5

Magic City, ID June 25th 74 5,312 ft 50 3/5

Bountiful, UT July 10th 91 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th 93 4,242 ft 7,289 5/5

Why, AZ August 18th 104 860 ft 480 3/5

<table>

</table>

</tr>

<th>Date</th>

<td>August 9th</td>

</tr>
</tr>
</tr>
</tr>
</tr>

</tr>

<tr>

<tr>

<tr>
<tr>
<tr>
<tr>
<tr>

Each <tr> element
specifies a table row.
So, all the table data
that goes in a row is
nested inside the <tr>
element.

The </tr> tag ends
a row of the table.

The </table> tag
ends the table.

The <td> element contains one data cell in your
table. It must be inside a table row.

The <th> element contains one cell in the heading of
your table. It must be inside a table row.

you are here 4 607

tables and more lists

Q: Why isn’t there a table column
element? That seems pretty important.

A: The designers of HTML decided to
let you specify tables by row, rather than
by column. But notice that by specifying
each row’s <td> elements, you are implicitly
specifying each column anyway.

Q: What happens if I have a row that
doesn’t have enough elements? In other
words, I’ve got fewer things than the
number of columns in the table?

A: The easiest way to deal with that is to
just leave the content of the data cell empty;
in other words, you write <td></td>. If you
leave out the data cell, then the table won’t
line up properly, so all the data cells have to
be there, even if they are empty.

Q: What if I want my table headings to
be down the left side of the table, instead
of across the top; can I do that?

A: Yes, you certainly can. You just need
to put your table heading elements in each
row instead of all in the first row. If your <th>
element is the first item in each row, then the
first column will consist of all table headings.

Q: My friend showed me a cool trick
where he did all his page layout right
within a table. He didn’t even have to use
CSS!

A: Go straight to CSS jail. Do not pass
go; do not collect $200.
Using tables for layout was commonly done
in the HTML era before CSS, when, frankly,
there was no better way to do complex
layouts. However, it is a poor way to do

your layouts today. Using tables for layout
is notoriously hard to get right and difficult
to maintain. Instead, it’s much better to
use CSS table display to get the benefits
of a table layout without actually creating
an HTML table (this is how we styled the
Starbuzz page in Chapter 11). Tell your
friend that his technique is old school, and
he needs to get up to speed with the right
way to do layout: CSS with HTML.

Q: Isn’t a table all about presentation?
What happened to presentation versus
structure?

A: Not really. With tables, you are
specifying the relationships between tabular
data items. We’ll use CSS to alter the
presentation of the table.

Q: How do HTML tables relate to CSS
table display?

A: HTML tables allow you to specify
the structure of a table using markup while
CSS table display gives you a way to
display block-level elements in a table-like
presentation. Think about it this way, when
you really need to create tabular data in your
page, use tables (and we'll see how to style
these in a bit); however, when you just need
to make use of a table-like presentation with
other types of content, then you can use a
CSS table display layout.

Q: Can we use CSS table display to
style HTML tables?

A: Well, you don’t really need to. Why?
Because you’re already creating a tabular
structure with HTML, so, as you’ll see,
you can use simple CSS to style the table
however you like.

Tables give you a way
to specify tabular data
in your HTML.

Tables consist of data
cells within rows.
Columns are implicitly
defined within the
rows.

The number of
columns in your table
will be the number of
data cells you have in
a row.

In general, tables are
not meant to be used
for presentation; that’s
the job of CSS.

608 Chapter 13

testing you on tables

<table><tr><th>Artist</th>

<th>Album</th></tr><tr>

<td>Enigma</td><td>Le Roi Est Mort,
Vive Le Roi!</td></tr> <tr><td>LTJ
Bukem</td>

<td>Progression Sessions 6</td>

</tr><tr>

<td>Timo Maas</td>

<td>Pictures</td></tr></table>
Here’s just the
table HTML.

Draw the table here.

Argh! Someone needs to learn
how to format her HTML.

BE the Browser
On the left, you’ll find the HTML
for a table. Your job is to play like
you’re the browser displaying the

table. After you’ve done
the exercise, look at the
end of the chapter to
see if you got it right.

you are here 4 609

tables and more lists

Adding a caption
You can improve your table right off the bat by adding a caption.

 <table>
 <caption>
 The cities I visited on my
 Segway'n USA travels
 </caption>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 <tr>
 <td>Walla Walla, WA</td>
 <td>June 15th</td>
 <td>75</td>
 <td>1,204 ft</td>
 <td>29,686</td>
 <td>4/5</td>
 </tr>
 <tr>
 <td>Magic City, ID</td>
 <td>June 25th</td>
 <td>74</td>
 <td>5,312 ft</td>
 <td>50</td>
 <td>3/5</td>
 </tr>
 .
 .
 .
 </table>

The rest of the table
rows go here.

The caption is displayed in the
browser. By default, most browsers
display this above the table.

If you don’t like the default location of
the caption, you can use CSS to reposition
it (we’ll give that a try in a sec). Keep
in mind that older browsers don’t fully
support repositioning the caption.

You should always put the caption at the
top of your table in the HTML, and use
CSS to reposition it to the bottom, if
that’s where you want it.

610 Chapter 13

checking out the unstyled table

Test drive…and start thinking about style

The caption is at the top of the table. It’ll probably look better on the bottom.

We really need to add some padding
to the table data cells, to make
them easier to read…

…and a splash of orange to
match Tony’s site could really
pull the whole thing together.

Add the caption to your table. Save and reload.

…and the border lines are really “heavy” visually.
We could use much “lighter” borders in the
table cells, although it would be nice to have a
dark border around the whole table…

you are here 4 611

tables and more lists

Before we start styling, let’s get the table
into Tony’s page
Before we start adding style to Tony’s new table, we should really get the table
into his main page. Remember that Tony’s main page already has set a font-
family, font-size, and other styles that the table is going to inherit. So without
putting the table into his page, we won’t really know what the table looks like.

Start by opening “journal.html” in the “chapter13/journal” folder, locate the
August 20th entry, and make the following changes. When you’ve finished,
move on to the next page before reloading.

<h2>August 20, 2012</h2>
<p>

</p>

<p>
Well, I made it 1200 miles already, and I passed through some interesting
places on the way:
</p>

 Walla Walla, WA
 Magic City, ID
 Bountiful, UT
 Last Chance, CO
 Truth or Consequences, NM
 Why, AZ

<table>
 <caption>The cities I visited on my Segway'n USA travels</caption>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 .
 .
 .
</table>

This is the old list
of cities. Delete this
because we’re replacing
it with the table.

The new table goes here. Copying and pasting it from the
previous file is the easiest way to get it here.

612 Chapter 13

tables and style

@font-face {
 font-family: "Emblema One";
 src: url("http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-Regular.woff"),
 url("http://wickedlysmart.com/hfhtmlcss/chapter8/journal/EmblemaOne-Regular.ttf");
}
body {
 font-family: Verdana, Geneva, Arial, sans-serif;
 font-size: small;
}
h1, h2 {
 color: #cc6600;
 border-bottom: thin dotted #888888;
}
h1 {
 font-family: "Emblema One", sans-serif;
 font-size: 220%;
}
h2 {
 font-size: 130%;
 font-weight: normal;
}
blockquote {
 font-style: italic;
}

table {
 margin-left: 20px;
 margin-right: 20px;
 border: thin solid black;
 caption-side: bottom;
}

td, th {
 border: thin dotted gray;
 padding: 5px;
}

caption {
 font-style: italic;
 padding-top: 8px;
}

At the top here is all the style that’s
currently in Tony’s web page. We
added all this in Chapter 8. We’re
going to add the new style for the
tables below it.

This rule styles the caption. We’re changing the
font-style to italic and adding some top padding.

First, we’ll style the table. We’re going to add a margin on
the left and right, and a thin, black border to the table.

Let’s also change the border on the table data cells to be a
much lighter, dotted border in gray.
And let’s add some padding to the data cells so there’s some
space between the data content and the border.

Now let’s style the table
Add the new style highlighted below at the bottom of the “journal.css”
stylesheet file.

And we’re going to move that caption
to the bottom of the table.

you are here 4 613

tables and more lists

Taking the styled tables for a test drive
That’s a lot of changes at once. Make sure you save them, and you should
validate as well. Then load “journal.html” into your browser.

The table looks quite
different now that you’ve
styled it. We’re also inheriting
a few styles that were
already in Tony’s journal.

All the fonts are now sans-serif
and a smaller size. We picked
that up from the previous styles
already in the file.

Now we’ve got a dark border
and dotted lines.

And we’ve got some margin on
the table and some padding in
each table cell.

Those dotted lines are looking
really busy and distracting,
though. It doesn’t help that they
are duplicated between each pair
of table cells.

Remember, in browsers that don’t support the caption-side
property, the caption will still be at the top of the table.

614 Chapter 13

cells and the box model

Table cells look like they just
use the box model too…they’ve

got padding and a border. Do they
also have a margin?

The box model is a good way to think about table cells, but they do
differ when it comes to margins. Let’s take a look at one of the cells
in Tony’s table:

Table cells do have padding and a border—just like
you’ve seen in the box model—but they are a little
different when it comes to margins.

Here’s the content.

And here’s
the padding.

And here’s the border.

We call the space in between
the cells border-spacing.

So instead of a margin, we have a border-spacing property, which
is defined over the entire table. In other words, you can’t set the

“margin” of an individual table cell; rather, you set a common spacing
around all cells.

This is just like the
border-spacing
property we used in
the CSS table display
layout for Starbuzz.

you are here 4 615

tables and more lists

Q: You said border spacing is defined
for the entire table, so I can’t set a margin
for an individual table cell?

A: Right. Table cells don’t have margins;
what they have is spacing around their
borders, and this spacing is set for the entire
table. You can’t control the border spacing of
each table cell separately.

Q: Well, is there any way to have
different border spacing on the vertical
than I have on the horizontal? That seems
useful.

A: You sure can. You can specify your
border spacing like this:
 border-spacing: 10px 30px;
That sets 10 pixels of horizontal border
space and 30 pixels of vertical border space.

Q: The border-spacing property
doesn’t seem to work in my browser.

A: Are you using an old version of
Internet Explorer? We’re sorry to report that
IE version 6 doesn’t support border-spacing.
But seriously, isn’t it time you upgraded your
browser?

The double dotted lines are giving Tony’s table a busy and distracting look.
It would be much better, and wouldn’t detract from the table, if we could
just have one border around each table cell. Can you think of a way to do
that with styling given what you’ve just learned? Give it a try and check
your answer in the back of the chapter.

616 Chapter 13

dealing with table borders

Getting those borders to collapse

table {
 margin-left: 20px;
 margin-right: 20px;
 border: thin solid black;
 caption-side: bottom;
 border-collapse: collapse;
}

There is another way to solve the border dilemma, besides the
border-spacing property. You can use a CSS property called
border-collapse to collapse the borders so that there is no border
spacing at all. When you do this, your browser will ignore any border
spacing you have set on the table. It will also combine two borders
that are right next to each other into one border. This “collapses” two
borders into one.

Here’s how you can set the border-collapse property. Follow along
and make this change in your “journal.css” file:

Add a border-collapse property
and set its value to “collapse”.

Save the file and reload; then check out the
changes in the border.

Now you just have one single border
around all the table cells. Just what
we wanted, and don’t you agree that
the table looks much cleaner now?

you are here 4 617

tables and more lists

You’re becoming quite the pro at HTML and CSS, so we don’t mind giving you a
little more to play with in these exercises. How about this: we’d like to spruce this
table up even a little more, starting with some text alignment issues. Let’s say we
want the date, temperature, and diner rating to be center-aligned. And how about
right alignment on the altitude and population? How would you do that?

Here’s a hint: create two classes, one for center-aligned and one for right-aligned.
Then just use the text-align property in each. Finally, add the appropriate class to
the correct <td> elements.

This may sound tough, but take it step by step; you already know everything you
need to finish this one. And, of course, you can find the answer in the back of the
chapter, but give yourself the time to solve it before you peek.

These are all centered.

And these are right-aligned.

618 Chapter 13

coloring cells

How about some color?

th {
 background-color: #cc6600;
}

.cellcolor {
 background-color: #fcba7a;
}

You know Tony loves his signature color and there’s no reason not
to add a splash of orange to his table; not only will it look great,
but we can actually improve the readability of the table by adding
some color. Just like for any other element, all you need to do is
set the background-color property on a table cell to change its
color (notice how everything you’ve learned about HTML and
CSS is starting to come together!). Here’s how you do that:

Add this new rule to your “journal.css” file and reload.
Here’s what you’ll see:

How about some color in the
table rows?
So far, the color is looking pretty nice. Let’s take it to the
next level. A common way to color tables is to give rows an
alternating color, which allows you to more easily see each
row without getting confused about which column goes
with which row. Check it out:

Difficult to do in CSS? Nope. Here’s how you can do this.
First define a new class—let’s call it “cellcolor”:

and then add this class attribute to each row you’d like
to color. So in this case, you find the <tr> opening
tags for Magic City, Last Chance, and Why, and add
class="cellcolor" to each one.

Your turn. Add the class “cellcolor” to your
CSS in “journal.css”, and then, in your
HTML, add class=“cellcolor” to each of the
<tr> opening tags needed to make the rows
alternating colors. Check your answers
before moving on.

you are here 4 619

tables and more lists

<section>

<p>

<p>

<p>

<p>

Want to see another, more advanced way to add color to every other row of a table? It’s called the nth-child
pseudo-class. Remember, pseudo-classes are used to style elements based on their state (like the a:hover
pseudo-class we used in Head First Lounge, which styles a link if the user is hovering the mouse over the link).
For the nth-child pseudo-class, that state is the numerical order of an element in relation to its sibling elements.
Let’s look at an example of what that means:

Here, we have four paragraphs nested in a <section>
element. Each paragraph is a “child” of the <section>.

This is the first child…
…this is the second child…

…the third child…

<section>

<p>

<p>

<p>

<p> …and this is the fourth child.

Let’s say you want to select the even paragraphs (that is, paragraphs 2 and 4) so they have a red
background color, and the odd paragraphs so they have a green background color. You do that like this:

p:nth-child(even) {
 background-color: red;
}
p:nth-child(odd) {
 background-color: green;
}

Paragraphs 2 and 4 will be red…

…and paragraphs 1 and 3 will be green.

As you might guess from the name “nth-child”, this pseudo-class is even more flexible
than just selecting odd and even items nested in an element. You can also specify simple
expressions that use the number n to give you a wide variety of options in selecting elements.
For instance, you can also select the even and odd paragraphs like this:

p:nth-child(2n) {
 background-color: red;
}
p:nth-child(2n+1) {
 background-color: green;
}

If n=0, then 2n=0 (no
paragraph), and 2n+1 is 1, which
is the first paragraph.
If n=1, then 2n=2, the second
paragraph, and 2n+1=3, the
third paragraph.

Selects even-
numbered <p>s

Selects odd-
numbered <p>s

Some Serious CSS

620 Chapter 13

testing nth-child pseudo-classes

Why don’t you try your hand using the nth-child pseudo-class?
Complete the CSS rule below using the nth-child pseudo-class
to color the odd rows light orange.

Did we mention that
 in Truth

or Consequences, New Mexico?

Tess

It’s fair to say Tony found something interesting
about Truth or Consequences, New Mexico; in
fact, he found her so interesting that after going to
Arizona, he turned around and came right back.

We’re glad for Tony, but he’s really given us a
conundrum with the table. While we could just add
a new row for Truth or Consequences, we’d really
like to do it in a more elegant way. What are we
talking about? Look on the next page to find out.

Tony made
an interesting discovery

Rows 1, 3, 5, and 7 all have a light-orange background
color. But the rule for th will override the rule for
the “odd” rows, so it will stay dark orange.

tr:___________________ {
 background-color: #fcba7a;
}

Write your pseudo-class
selector here.

/* .cellcolor {
 background-color: #fcba7a;
} */

Comment out your .cellcolor class like this:

A Serious Exercise

If you want to try this for real, first comment out your .cellcolor
class so it doesn’t take effect anymore. Next, place the new
tr pseudo-class rule above the rule for setting the background
color of the <th> row (so the <th> row stays dark orange). Make
sure you’re using a modern browser (IE9+!), and reload the
page. Did it work? Go ahead and remove this new rule, and
uncomment the .cellcolor rule before moving on.

you are here 4 621

tables and more lists

Another look at Tony’s table
Based on his return trip to New Mexico, Tony’s added a new entry for August 27th,
just below the original Truth or Consequences entry. He’s also reused a couple of
cells where the information didn’t change (a great technique for reducing the amount
of information in a table). You can see that when he added the new row, all he
needed to do was list the things that were different the second time around (the date,
the temperature, and that he revisited the diner).

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75 1,204 ft 29,686 4/5

Magic City, ID June 25th 74 5,312 ft 50 3/5

Bountiful, UT July 10th 91 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th 93 4,242 ft 7,289 5/5

August 27th 98 4/5

Why, AZ August 18th 104 860 ft 480 3/5

Here are both
of Tony’s visits
to Truth or
Consequences.

But where does this leave you with HTML? It seems like you’d have to add an entirely
new row and just duplicate the city, altitude, and population, right? Well, not so fast.
We have the technology…using HTML tables, you can have cells span more than
one row (or more than one column). Let’s see how this works…

These table data cells
span TWO rows now.

622 Chapter 13

using table spans

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75 1,204 ft 29,686 4/5

Magic City, ID June 25th 74 5,312 ft 50 3/5

Bountiful, UT July 10th 91 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th 93 4,242 ft 7,289 5/5

August 27th 98 4/5

Why, AZ August 18th 104 860 ft 480 3/5

How to tell cells to span more than one row
What does it mean for a cell to span more than one row? Let’s look at the entries
for Truth or Consequences, NM, in Tony’s table again. The data cells for city,
altitude, and population span two rows, not one, while the date, temp, and diner
rating span one row, which is the normal, default behavior for data cells.

 <tr>
 <td rowspan="2">Truth or Consequences, NM</td>
 <td class="center">August 9th</td>
 <td class="center">93</td>
 <td rowspan="2" class="right">4,242 ft</td>
 <td rowspan="2" class="right">7,289</td>
 <td class="center">5/5</td>
 </tr>
 <tr>

 <td class="center">August 27th</td>
 <td class="center">98</td>

 <td class="center">4/5</td>
 </tr>

These cells span two rows.
While the date, temp,
and diner rating cells
take up just one.

So, how do you do that in HTML? It’s easier than you might think: you use the
rowspan attribute to specify how many rows a table data cell should take up, and
then remove the corresponding table data elements from the other rows that the cell
spans over. Have a look—it’s easier to see than describe:

Here are the two table
rows that have the New
Mexico data.

For the data cells that don’t
change on the second visit (city,
altitude, and population), we add a
rowspan attribute indicating that
the table data spans two rows.

Then in the second row, we
specify just the columns we need
(date, temp, and a new rating).

The city is not
needed because
of the rowspan.

Same with
altitude and
population

you are here 4 623

tables and more lists

Just to make sure you’ve got this down, fill in each cell in the
table with the data from the correct <td> table cell. We’ve
done one for you to get you started. Check your answers
before moving on.

 <tr>
 <td rowspan="2">Truth or Consequences, NM</td>
 <td class="center">August 9th</td>
 <td class="center">93</td>
 <td rowspan="2" class="right">4,242 ft</td>
 <td rowspan="2" class="right">7,289</td>
 <td class="center">5/5</td>
 </tr>
 <tr>

 <td class="center">August 27th</td>
 <td class="center">98</td>

 <td class="center">4/5</td>
 </tr>

98

624 Chapter 13

testing table spans

Now we’ve got a great-looking
table that doesn’t have any
redundant information in it
and looks good too!

Q: You said you can have table data
span columns too?

A: You sure can. Just add a colspan
attribute to your <td> element and specify
the number of columns. Unlike the rowspan,
when you span columns, you remove table
data elements that are in the same row
(since you are spanning columns, not rows).

Q: Can I have a colspan and rowspan
in the same <td>?

A: You sure can. Just make sure you
adjust the other <td>s in the table to account
for both the row and column spans. In
other words, you’ll need to remove the
corresponding number of <td>s from the
same row, and from the column.

Q: Do you really think these rowspans
look better?

A: Well, they certainly reduce the amount
of information in the table, which is usually a
good thing. And, if you look at a few tables
out there in the real world, you’ll find that
rowspans and colspans are quite common,
so it’s great to be able to do them in HTML.
But if you liked the table better before, feel
free to change your HTML and go back to
the previous version.

Test drive the table
Make the changes to the table in “journal.
html” and give it a test run. Take a look at
the table. Think about exactly what you’re
doing to the table: you’re using HTML to
specify that certain cells should take up
more than one row, and to do that, you’re
removing the <td>s they’re displacing.

you are here 4 625

tables and more lists

It looks like we’ve got a disagreement on the diner rating for August
27th, and while we could ask Tony and Tess to come to a consensus, why
should we? We’ve got tables, and we should be able to get another rating
in there. But how? We don’t really want to add yet another entry just for
Tess’s review. Hmmm…why don’t we do it like this?

Trouble in paradise?

Why not put both their ratings
in the table? That way, we get
more accurate information.

Four out of five stars?
I know my diners, and that
was a solid five-star rating!
You better change that in

the table.

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75 1,204 ft 29,686 4/5

Magic City, ID June 25th 74 5,312 ft 50 3/5

Bountiful, UT July 10th 91 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th 93 4,242 ft 7,289 5/5

August 27th 98 Tess 5/5

Tony 4/5

Why, AZ August 18th 104 860 ft 480 3/5

626 Chapter 13

adding a nested table

 <tr>
 <td rowspan="2">Truth or Consequences, NM</td>
 <td class="center">August 9th</td>
 <td class="center">93</td>
 <td rowspan="2" class="right">4,242 ft</td>
 <td rowspan="2" class="right">7,289</td>
 <td class="center">5/5</td>
 </tr>
 <tr>
 <td class="center">August 27th</td>
 <td class="center">98</td>
 <td>
 4/5
 <table>
 <tr>
 <th>Tess</th>
 <td>5/5</td>
 </tr>
 <tr>
 <th>Tony</th>
 <td>4/5</td>
 </tr>
 </table>
 </td>
 </tr>

…and put a table in its place. This table holds
two diner ratings: one for Tess and one for
Tony. We’re using table headings for their
names, and data cells for their ratings.

That’s because it is. But nested tables in
HTML are straightforward. All you need
to do is put another <table> element
inside a <td>. How do you do that? You
create a simple table to represent both
Tony’s and Tess’s ratings together, and
when you have that working, put it inside
the table cell that now holds Tony’s 4/5
rating. Let’s give it a try…

Hold on…that looks like a
table within a table.

First, delete the old rating
that represented Tony’s rating…

you are here 4 627

tables and more lists

Test driving the nested table
Go ahead and type in the new table. Tables are easy to mistype,
so make sure you validate and then reload your page. You
should see the new, nested table.

Wow, looking nice.
Only that background
really is a bit much
for a nested table.
Let’s keep the names
bold, but take off
the background color.

628 Chapter 13

testing what you know about tables

We want to change the background color of
the nested table headers to white.

Determine the
selector to select
only the nested
table heading
elements.

Stop! Don’t look

at the next page

until you do this

exercise.

It’s time to fall back on all that training you’ve done. What you need to do is
change the table heading background color for just Tony and Tess, and do
it without changing the background of the main table headings. How? You
need to find a selector that selects only the nested table headings.

 {
 background-color: white;
}

you are here 4 629

tables and more lists

Overriding the CSS for the nested
table headings

table table th {
 background-color: white;
}

You can target just the <th> elements in the nested table using
a descendant selector. Add a new rule to your CSS that uses
the “table table th” selector to change the background color of
the nested table headers to white:

Now save the changes to your “journal.css” file and reload.

Now the <th> in the
nested table has a
white background.

But notice it still has the bold
font weight since we didn’t
override that property.

brain

power

Q: I used a class to solve the Brain
Barbell. I created a class called “nestedtable”
and assigned each table heading to it. Then
I created a rule like this:

 .nestedtable {
 background-color: white;
 }

Is that an okay solution too?

A: There are lots of different ways to solve
problems using CSS, and certainly your
solution is an effective and perfectly valid way
to use CSS. We’ll just point out that by using
the descendant selector instead, we didn’t have
to make any changes to our HTML. What if
Tony and Tess keep adding reviews for diners?
Then for every review, you’d have to make
sure and add the class to each <th>. With our
solution, the styling happens automatically.

You want Tony and Tess to
have different background
colors on their table rows;
say, blue and pink. Can
you think of several ways
to do that?

630 Chapter 13

adding a list to tony’s blog

Giving Tony’s site the final polish
Tony’s page is really looking nice, but there’s one more area we haven’t spent
any time styling yet: the list that contains the set of items he was preparing for
his trip. You’ll find this list in his June 2nd entry; check it out below:

 .
 .
 .
 <h2>June 2, 2012</h2>

 <p>
 <img src="images/segway1.jpg"
 alt="The first day of the trip" />
 </p>

 <p>
 My first day of the trip! I can't
 believe I finally got everything
 packed and ready to go. Because
 I'm on a Segway, I wasn't able
 to bring a whole lot with me:
 </p>

 cellphone
 iPod
 digital camera
 a protein bar

 <p>
 Just the essentials. As Lao Tzu
 would have said, <q>A journey of
 a thousand miles begins with
 one Segway.</q>
 </p>
</body>
</html>

Here’s the bottom of Tony’s journal,
“journal.html”. Remember his packing
list in his first journal entry?

We’re looking at just the HTML
snippet from the June 2nd entry.

Here’s what the list looks like now.

you are here 4 631

tables and more lists

Giving the list some style
You already know that once you know the basic CSS font, text, color, and other
properties, you can style just about anything, including lists. You’ve already seen a little
list styling (Chapter 12), and it turns out there are only a couple properties that are
specific to lists, so there’s not too much more to learn. The main list property is called
list-style-type, and it allows you to control the bullets (or markers, as they are
called) used in your lists. Here are a few ways you can do that:

li {
 list-style-type: disc;
}

Disc is the default
marker type.

li {
 list-style-type: none;
}

li {
 list-style-type: square;
}

li {
 list-style-type: circle;
}

The circle property value gives
you a simple circle marker.

A value of none
removes the marker
altogether.

And square gives you a
square marker.

Here we’re setting the style on the element. You can also set it
on the element, and it will be inherited by the elements.

632 Chapter 13

creating a custom list marker

What if you want a custom marker?
Do you really think Tony would want anything less than his
own custom marker? Well, luckily CSS has a property called
list-style-image that lets you set an image to be the
marker for a list. Let’s give it a try on Tony’s list:

And, the final test drive…
This is it: your last change to Tony’s
site. Add the rule for the list item to your
CSS and then reload.

li {
 list-style-image: url(images/backpack.gif);
 padding-top: 5px;
 margin-left: 20px;
}

Here’s the list with the marker replaced with an image and some extra margin and padding spacing.

Here’s the list-style-image property,
which we’re setting to a URL.

We’re adding some margin to add
space on the left of the list items,
and also a little top padding to give
each list item a bit of headroom.

The image “backpack.gif” is a
small version of this backpack.
Seems fitting, doesn’t it? And
in Tony’s signature color, too.

you are here 4 633

tables and more lists

Q: What about ordered lists?
What can I do to change their style?

A: You style ordered and
unordered lists in the same way.
Of course, an ordered list has a
sequence of numbers or letters for
markers, not bullets. Using CSS, you
can control whether an ordered list’s
markers are decimal numbers, roman
numerals, or alphabetic letters (like a,
b, c) with the list-style-type property.
Common values are decimal, upper-
alpha, lower-alpha, upper-roman, and
lower-roman. Consult a CSS reference
for more options (there are many).

Q: How can I control the text
wrap on lists? In other words, how
can I control whether text wraps
underneath the marker or just
underneath the text?

A: There’s a property called
list-style-position. If you set this
property to “inside”, then your text will
wrap under the marker. If you set it to
“outside”, then it will wrap just under
the text above it.

Q: Are you sure that’s right?
That seems backward.

A: Yes, and here’s what inside and
outside really mean: if you set your
line-style-position to “inside”, then the
marker is inside your list item and so
text will wrap under it. If you set it to
“outside”, then the marker is outside
your list item and so text will just wrap
under itself. And by “inside your item,”
we mean inside the border of the list
item’s box.

Wow, who would have known
we could take my site this far

when we started?

We’re going to get Tess a Segway of
her own so she can go with me on the
rest of my Segway’n USA trip. See
ya somewhere…and we’ll BOTH be

updating the web page. Thanks
for everything!

634 Chapter 13

review of tables and lists

 � HTML tables are used to structure tabular data.

 � Use the HTML table elements <table>, <tr>,
<th>, and <td> together to create a table.

 � The <table> element defines and surrounds
the entire table.

 � Tables are defined in rows, using the <tr>
element.

 � Each row contains one or more data cells,
defined with the <td> element.

 � Use the <th> element for data cells that are
row or column headings.

 � Tables are laid out in a grid. Each row
corresponds to a <tr>…</tr> row in your
HTML, and each column corresponds to the
<td>…</td> content within the rows.

 � You can provide additional information about
your tables with the <caption> element.

 � Tables have border-spacing, which is the
space between cells.

 � Table data cells can also have padding and
borders.

 � Just like you can control the padding, borders,
and margins of elements, you can control the
padding, borders, and border-spacing of table
cells with CSS.

 � border-collapse is a special CSS property for
tables that allows you to combine cell borders
into one border for a cleaner look.

 � You can change the alignment of the data
in your table cells with the text-align and
vertical-align CSS properties.

 � You can add color to your tables with the
background-color property. Background color
can be added to the entire table, to each row,
or to a single data cell.

 � Use the CSS nth-child pseudo-class to add
background color to every other row of a table.

 � If you have no data for a data cell, put no
content into the <td> element. You need to
use a <td>…</td> element to maintain the
alignment of the table, however.

 � If your data cell needs to span multiple rows or
columns, you can use the rowspan or colspan
attributes of the <td> element.

 � You can nest tables within tables by placing
the <table> element and all its content inside a
data cell.

 � Tables should be used for tabular data, not for
laying out your pages. Use CSS table display
to create multicolumn page layouts as we
described in Chapter 11.

 � Lists can be styled with CSS just like any other
element. There are a few CSS properties
specific to lists, such as list-style-type and
list-style-image.

 � list-style-type allows you to change the type of
the marker used in your list.

 � list-style-image allows you to specify an image
for your list marker.

you are here 4 635

tables and more lists

HTMLcross
That crossword looks a bit like a table, doesn’t it? Give your left brain a
workout and solve this crossword. All the words are from this chapter.

Across
1. Used to control whether the marker is inside or outside the
list items border.
4. What a data cell does when it uses more than one row or
column.
7. Default position of the caption.
8. Used to merge borders.
9. Use this property to use an image instead of a built-in
marker in your lists.
10. Area between borders.
13. Adds a short description that is displayed with the table.
14. You specify HTML tables by ____, not columns.
15. We call bullets a type of list ______.

Down
1. Use this property to change your list marker.
2. Don’t use tables for this.
3. list-item-position can be used to control the behavior of
text ____.
5. Table cells have padding and borders, but no _____.
6. <th> is used for these.
11. <td> is for this.
12. One table inside another is called _____.

1

2 3

4 5

6

7 8

9

10 11 12

13 14

15

Across
1. Used to control whether the

marker is inside or outside the list
items border.

4. What a data cells does when it
uses more than one row or column.

7. Default position of the caption.
8. Used to merge borders.
9. Use this property to use an image

instead of a built-in marker in your
lists.

10. Area between borders.
13. Adds a short description that is

displayed with the table.
14. You specify HTML tables by ____,

not columns.
15. We call bullets a type of list

______.

Down
1. Use this property to change your

list marker.
2. Don't use tables for this.
3. list-item-position can be used to

control the behavior of text ____.
5. Table cells have padding and

borders, but no _____.
6. <th> is used for these.

11. <td> is for this.
12. One table inside another is called

_____.

636 Chapter 13

exercise solutions

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <style type="text/css">
 td, th {border: 1px solid black;}
 </style>
 <title>Testing Tony's Table</title>
</head>
<body>
 <table>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 <tr>
 <td>Walla Walla, WA</td>
 <td>June 15th</td>
 <td>75</td>
 <td>1,204 ft</td>
 <td>29,686</td>
 <td>4/5</td>
 </tr>
 <tr>
 <td>Magic City, ID</td>
 <td>June 25th</td>
 <td>74</td>
 <td>5,312 ft</td>
 <td>50</td>
 <td>3/5</td>
 </tr>
 <tr>
 <td>Bountiful, UT</td>
 <td>July 10th</td>
 <td>91</td>
 <td>4,226 ft</td>
 <td>41,173</td>
 <td>4/5</td>
 </tr>
 <tr>
 <td>Last Chance, CO</td>
 <td>July 23rd</td>
 <td>102</td>
 <td>4,780 ft</td>
 <td>265</td>
 <td>3/5</td>
 </tr>

First, type in the
“Testing Tony’s Table”
HTML. Typing this
in, while tedious,
will help get the
structure of the
<table>, <tr>, <th>,
and <td> tags in
your head. When
you finish, give it a
quick test, and then
add the remaining
items from Tony’s
table. Test that too.

Continues over the page

you are here 4 637

tables and more lists

 <tr>
 <td>Truth or Consequences, NM</td>
 <td>August 9th</td>
 <td>93</td>
 <td>4,242 ft</td>
 <td>7,289</td>
 <td>5/5</td>
 </tr>
 <tr>
 <td>Why, AZ</td>
 <td>August 18th</td>
 <td>104</td>
 <td>860 ft</td>
 <td>480</td>
 <td>3/5</td>
 </tr>
 </table>
</body>
</html>

Continued

638 Chapter 13

exercise solutions

<table>
 <tr>
 <th>Artist</th>
 <th>Album</th>
 </tr>
 <tr>
 <td>Enigma</td>
 <td>Le Roi Est Mort, Vive Le Roi!</td>
 </tr>
 <tr>
 <td>LTJ Bukem</td>
 <td>Progression Sessions 6</td>
 </tr>
 <tr>
 <td>Timo Maas</td>
 <td>Pictures</td>
 </tr>
</table>

We formatted the HTML so
that it’s easier to read if you
happen to be a human.

BE the Browser Solution
On the left, you’ll find the HTML
for a table. Your job is to play
like you’re the browser displaying

the table. Here’s the
solution.

you are here 4 639

tables and more lists

The double dotted lines are giving Tony’s table a busy and distracting look.
It would be much better, and wouldn’t detract from the table, if we could
just have one border around each table cell. Can you think of a way
to do that with styling given that you’ve just learned? You can set the
border-spacing property to 0 to remove the space between the borders.

table {
 margin-left: 20px;
 margin-right: 20px;
 border: thin solid black;
 caption-side: bottom;
 border-spacing: 0px;
}

Better, but we still have two lines and they’re right up
against each other, so we have a double, thick, dotted
border. We’d rather it just be ONE border between the
cells. Wouldn’t we?

We could use border-spacing to set spacing to 0; then the two lines would be right next to each other.

640 Chapter 13

exercise solutions

.center {
 text-align: center;
}
.right {
 text-align: right;
}

Here are the two classes,
one for center and one
for right alignment.Let’s say we want the date, temperature, and

diner rating to be center-aligned. And how
about right alignment on the altitude and
population? Here’s how you would do that:

 <table >
 <caption>The cities I visited on my Segway'n USA travels</caption>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 <tr>
 <td>Walla Walla, WA</td>
 <td class="center">June 15th</td>
 <td class="center">75</td>
 <td class="right">1,204 ft</td>
 <td class="right">29,686</td>
 <td class="center">4/5</td>
 </tr>
 <tr>
 <td>Magic City, ID</td>
 <td class="center">June 25th</td>
 <td class="center">74</td>
 <td class="right">5,312 ft</td>
 <td class="right">50</td>
 <td class="center">3/5</td>
 </tr>
 .
 .
 .
 </table>

And here you just add
each <td> to the
appropriate class!

To create alternating colors in the Magic City, Last Chance, and Why table rows with a class,
add the class=“cellcolor” attribute to the opening <tr> tags in the table rows, like this:

<tr class="cellcolor">
 <td>Magic City, ID</td>
 ...
</tr>

you are here 4 641

tables and more lists

Just to make sure you’ve got this down, draw an arrow from
each <td> element to its corresponding cell in the table.
Here are the answers.

Truth or
Consequences,
NM

August 9th 93 4,242 ft 7,289 5/5

August
27th

 98 4/5

SOlUTion

 <tr>
 <td rowspan="2">Truth or Consequences, NM</td>
 <td class="center">August 9th</td>
 <td class="center">93</td>
 <td rowspan="2" class="right">4,242 ft</td>
 <td rowspan="2" class="right">7,289</td>
 <td class="center">5/5</td>
 </tr>
 <tr>

 <td class="center">August 27th</td>
 <td class="center">98</td>

 <td class="center">4/5</td>
 </tr>

To create alternating colors in the Magic City, Last Chance, and Why table rows with a
pseudo-class, use the nth-child(odd) pseudo-class to select the odd <tr> rows in the table:

tr:nth-child(odd) {
 background-color: #fcba7a;
}

A Serious Exercise Solution

642 Chapter 13

exercise solutions

We can use a descendant selector to select just the nested table header. Here’s how you can do that:

(3) Then select the
table heading.

Determine the
selector to select
only the nested
table heading
elements.

It’s time to fall back on all that training you’ve done. What you need to do is
change the table heading background color for just Tony and Tess, and do
it without changing the background of the main table headings. How? You
need to find a selector that selects only the nested table headings.

 {
 background-color: white;
}

(1) Start by selecting
the outer table…

(2) Then select the
inner table…

table table th
(1) (2) (3)

Solution

you are here 4 643

tables and more lists

HTMLcross Solution

L1 I S T S T Y L E P O S I T I O N
I
S L2 W3

T S4 P A N S M5 R
S Y A A H6

T7 O P B8 O R D E R C O L L A P S E
Y U G P A
L9 I S T S T Y L E I M A G E I D
E N N I
T B10 O R D11 E R S P A C I N12 G N
Y A E G
P C13 A P T I O N R14 O W S S
E A T

M15 A R K E R
D

Across
1. Used to control whether the

marker is inside or outside the list
items border.
[LISTSTYLEPOSITION]

4. What a data cells does when it
uses more than one row or column.
[SPANS]

7. Default position of the caption.
[TOP]

8. Used to merge borders.
[BORDERCOLLAPSE]

9. Use this property to use an image
instead of a built-in marker in your
lists. [LISTSTYLEIMAGE]

10. Area between borders.
[BORDERSPACING]

Down
1. Use this property to change your

list marker. [LISTSTYLETYPE]
2. Don't use tables for this.

[LAYOUT]
3. list-item-position can be used to

control the behavior of text ____.
[WRAPPING]

5. Table cells have padding and
borders, but no _____.
[MARGINS]

6. <th> is used for these.
[HEADINGS]

11. <td> is for this. [DATA]
12. One table inside another is called

_____. [NESTED]

this is a new chapter 645

So far all your web communication has been one-way:
from your page to your visitors. Golly, wouldn’t it be nice if your visitors

could talk back? That’s where HTML forms come in: once you enable your pages

with forms (along with a little help from a web server), your pages are going to be

able to gather customer feedback, take an online order, get the next move in an

online game, or collect the votes in a “hot or not” contest. In this chapter you’re going

to meet a whole team of HTML elements that work together to create web forms.

You’ll also learn a bit about what goes on behind the scenes in the server to support

forms, and we’ll even talk about keeping those forms stylish.

Yeah, just got your
form. We’re checking it
with the server now, and
then we’ll get a response

right back to you.

html forms14

Getting Interactive

646 Chapter 14

browsers and forms

Browser

How forms work
If you use the Web at all, then you know what a form is. But you might not have
really thought about what they have to do with HTML. A form is basically a web
page with input fields that allows you to enter information. When the form is
submitted, that information is packaged up and sent off to a web server to be processed
by a server script. When the processing is done, what do you get? Another web page,
of course, as a response. Let’s take a closer look at how this works:

The browser packages up all the
data in the form and sends it
over to the web server.You visit a web page with

an HTML form, fill out
the form, and submit it.

The web server receives the form data, and then passes it off to a server script to be processed.

The server script processes the data in the
form and creates a brand-new HTML page as a
response, which it hands back to the web server.

The web server sends the

server script’s respon
se

back to the browser.
The browser gets the
response and displays it.

The response is an
HTML web page.

Web Server

Web Server

Server Script

Server Script

firstname=buck
lastname=bonz
item=java
number=2

<html>
 <head>
 <title>
 Your Order has
 Processed
 </title>
 <head>
 <body>
<p>Thanks for your
it will be shipping
soon!
 </p>
</body>
</head>

1

2

Browser

you are here 4 647

html forms

How forms work
in the browser
To a browser, a form is just a bit of HTML in a page.
You’ll see that you can easily create forms in your
pages by adding a few new elements. Here’s how a
form works from the browser’s perspective:

The browser loads the HTML for a page like
it always does, and when it encounters form
elements, it creates controls on the page that
allow you to input various kinds of data. A
control is just something like a button or a text
input box or a drop-down menu—basically
something that allows you to input data.

The browser loads the page

You use the controls to enter data. Depending
on the type of control, this happens in
different ways. You can type a single line of
text into a text control, or you might click one
option of many in a checkbox control. We’ll
look at the different kinds of controls shortly.

You enter data

You submit the form by clicking on a submit
button control. That’s the browser’s cue that it
needs to package up all the data and send that
data off to the server.

You submit the form

Once the server has the form data, it passes
it off to the appropriate server script for
processing. This processing results in a
brand-new HTML page that is returned to
the browser, and since it’s just HTML, the
browser displays it for you.

The server responds

648 Chapter 14

how to write a form

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>Enter the Contest</title>

 </head>

 <body>

 <form action="http://wickedlysmart.com/hfhtmlcss/contest.php"
 method="POST">

 <p>Just type in your name (and click Submit) to

 enter the contest:

 First name: <input type="text" name="firstname" value="">

 Last name: <input type="text" name="lastname" value="">

 <input type="submit">

 </p>

 </form>

 </body>

</html>

What you write in HTML
There’s no deep mystery to creating forms with HTML. In fact, in this chapter
you’re going to meet a whole new set of HTML elements that all work together
to create forms. The best way to get a feel for forms is to look at a little HTML
and then to give it a try. Check out this form:

This stuff is all old
hat for you now.

Here’s the form.

We’ve got the <form>
element itself…

…and a bunch of elements
nested inside it.

 For now, just take a good
look at the form and
what’s in it; we’ll be going into all the details
throughout the chapter.

A

B

C

D

you are here 4 649

html forms

What the browser creates
Big surprise; to create a form, you use a <form> element. Now, just about any block-
level element can go inside the <form> element, but there’s a whole new set of elements
that are made especially for forms. Each of these form elements provides a different
way for you to enter information: text boxes, checkboxes, menus of options, and more.
We’ll examine all these elements, but first take another look back at the HTML on the
previous page and see how the elements and content inside the <form> element are
displayed in the page below:

You’ll find the contest form in your “chapter14/contest” folder. Open it, take
another look around, then load it in your browser and enter the contest.

Here’s just normal
paragraph text in a form.

And here are two text
controls for entering a
first and last name. In
HTML you use the <input>
element to create these.

And here’s the
submit button.
(Your button might
say “Submit Query”
instead.)

A

B

C

D

650 Chapter 14

the form element

How the <form> element works
Let’s take a closer look at the <form> element—not only does it hold
all the elements that make up the form, but it also tells the browser
where to send your form data when you submit the form (and the
method the browser should use to send it).

Here’s the opening tag.
Everything in the form
goes inside.

The action attribute
holds the URL of the
web server…

…and the closing tag
ends the form.

…and the name
of the server
script that will
process the form
data.

The method attribute
determines how the form
data will be sent to the
server. We’re going to
use the most common
one: POST. Later in the
chapter we’ll talk about
other ways to send data,
and why you might or
might not use POST.

Bring it on.
We’re ready!

Hey wickedlysmart.com, my
user just clicked a button to

submit a form. I’ve got some form
data I’m sending you via POST. It’s

addressed to the “contest.php” server
script in the “hfhtmlcss” folder.

<form action="http://wickedlysmart.com/hfhtmlcss/contest.php" method="POST">

</form>

wickedlysmart.com

contest.php

Browser

…the folder
the script
is in…

hfhtmlcss

Everything inside your
form goes here…

you are here 4 651

html forms

Okay, so I have an HTML
form—that seems like the

easy part. But where do I get
a server script, or how do I

make one?

Good question.

Creating server scripts is a whole topic unto
itself and far beyond what we cover in this book.
Well, we tried to cover them, but the book ended
up weighing more than you do (not good). So,
anyway…

To create server scripts, you need to know a
scripting or programming language, and one
that is supported by your hosting company. Most
hosting companies support languages like PHP,
Ruby on Rails, Perl, Python, Node.js, and Java
(to name a few), and if you’re interested, you’ll
definitely want to pick up a book specifically
for creating server scripts (also known as
server-side programs). Check with your hosting
company; they sometimes provide simple scripts
to their customers, which takes the work out of
developing these scripts yourself.

As for this chapter, we’ve already developed
the server scripts you’ll need. All you’ll need to
do is put the URL of the script in the action
attribute of your <form> element.

652 Chapter 14

overview of form elements

text input

submit input

What can go in a form?
You can put just about any element into a form, but that’s not what we really
care about right now; we’re interested in the form elements that create controls in
the browser. Here’s a quick rundown of all the commonly used form elements.
We’re going to start with the <input> form element, which plays many roles
in the form’s world.

The text <input> element is
for entering one line of text.
Optional attributes let you
set a maximum number of
characters and the width of
this control.

<input type="text" name="fullname">

The <input>
element is a
void element,
so there's no
content after it.

Most form elements require a name
that is used by the server script. We’ll
see how this works in a bit.

An <input> element with a type
attribute of “text” creates a one-line
control in the browser page.

The submit <input> element creates
a button that allows you to submit a
form. When you click this button, the
browser sends the form to the server
script for processing.

For a submit button, specify “submit”
as the <input> element’s type.

The button is labeled
“Submit” (or “Submit
Query”) by default,
although you can
change that (we’ll
show you how later).

<input type="submit">

Notice that
both of
these use the
same HTML
element, but
with different
values in their
type attribute.

Use the type attribute to
indicate you want a “text” input.

you are here 4 653

html forms

radio input

checkbox input

<input type="radio" name="hotornot" value="hot">
<input type="radio" name="hotornot" value="not">

The radio <input> element creates a
single control with several buttons,
only one of which can be selected
at any time. These are like old-time
car radio buttons; you “push” one in,
and the rest “pop out.”

The radio control
allows only one of a set
of choices.

Use a radio <input>
for each choice.

All the radio buttons
associated with a given
set of choices must
have the same name…

…but each choice has a different value.

<input type="checkbox" name="spice" value="Salt">
<input type="checkbox" name="spice" value="Pepper">
<input type="checkbox" name="spice" value="Garlic">

A checkbox <input> element
creates a checkbox control that can
be either checked or unchecked.
You can use multiple checkboxes
together, and if you do, you can
check as many or few as you like.

Unlike radio buttons, a
checkbox allows zero or
more of a set of choices.

Like radio,
you use one
checkbox
<input> element
for each choice.

Related checkboxes also share
a common name. Each checkbox has a

different value.

Same here;
we’re still using
the <input>
element, just
with different
type values.

654 Chapter 14

more form elements

textarea

<textarea name="comments" rows="10" cols="48"></textarea>

The <textarea> element
creates a multiline text area
that you can type into. If you
type more text than will fit
into the text area, then a scroll
bar appears on the right side.

The <textarea>
element is not an
empty element,
so it has both
opening and
closing tags.

The cols attribute tell
s the

browser how many characters

wide to make the text area.

The rows attribute tells the browser how many characters tall to make the text area.
Any text that goes between the
opening and closing tags becomes
the initial text in the browser’s
text area control.

Use the name attribute to
give the element a unique name.

cols

rows

What can go in a form? (part 2)
Okay, not every form element is an <input> element. There are a few others, like
<select> for menus and <textarea> for typing in more than one line of text. So,
why don’t you get familiar with these as well before moving on? Oh, and by the way,
once you do that, you’ll know 90% of the form elements (and 99% of the form
elements that are commonly used).

You can also specify the width and height of a textarea using CSS.

you are here 4 655

html forms

option

select

The <option> element works with
the <select> element to create a
menu. Use an <option> element
for each menu item.

<select name="characters">
 <option value="Buckaroo">Buckaroo Banzai</option>
 <option value="Tommy">Perfect Tommy</option>
 <option value="Penny">Penny Priddy</option>
 <option value="Jersey">New Jersey</option>
 <option value="John">John Parker</option>
</select>

The content of the
<option> element is used
for the menu items’
description. Each menu
option also includes a
value representing the
menu item.

After clicking on the
menu, the menu items
drop down.

<select name="characters">
 <option value="Buckaroo">Buckaroo Banzai</option>
 <option value="Tommy">Perfect Tommy</option>
 <option value="Penny">Penny Priddy</option>
 <option value="Jersey">New Jersey</option>
 <option value="John">John Parker</option>
</select>

The <select> element creates a menu
control in the web page. The menu
provides a way to choose between a set
of choices. The <select> element works
in combination with the <option>
element below to create a menu.

The <select> element goes around all the menu options to group them into one menu.
Just like the other form elements,

give the select element a unique

name using the name attribute.

The select element creates
a menu that looks like
this (although the look
will vary depending on the
browser you’re using).

656 Chapter 14

even more form elements

Oh, even more can go in a form!
Ah yes, we can’t forget all the new fun stuff. With HTML5,
we’ve got even more specialized input forms. Let’s take a look:

number input
The number <input> element restricts
input to numbers. You can even specify
a min and max number that is allowed
with optional attributes.

range input
The range <input> element is similar
to number except that it displays a
slider instead of an input box.

color input
Use the color <input> to specify
a color. When you click on the
control, a color picker pops up
that allows you to select a color
rather than having to type in
the color name or value.

<input type="number" min="0" max="20">

Some browsers show arrows
next to the input area
you can use to increase or
decrease the number.

Use the max and min
attributes to restrict the
numbers allowed.

The “number” type means you’re expecting
a number only, not text.

<input type="range" min="0" max="20" step="5">

<input type="color">

Both number and range have an optional
step attribute you can use to specify the
number of intervals for the values.

If the color
input is not
supported by
the browser,
you’ll just get
a regular text
input instead.

Wait, HTML5
adds even more great

input types! Don’t
forget those!

you are here 4 657

html forms

date input
Use the date <input> element to specify
a date, with a date picker control. The
control creates a valid date format string
to send to the server script.

Not all browsers
fully support these
input types yet.
The input types on these
two pages are new in HTML5, and while you can use them in all web pages now, some may not display as you see them here.

email input
The email <input> element is just a text
input, but on some mobile browsers,
you’ll get a custom keyboard for email
when you start typing.

<input type="email">

<input type="date">

tel input
The tel <input> element is also just a text
input, but like email, causes a custom
keyboard to pop up on mobile devices.

<input type="tel">

url input
Like email and tel, the url <input>
type is just a text input, but causes
a custom keyboard to pop up on
mobile devices.

<input type="url">

Like with color, if the date input isn’t supported by the browser yet, you’ll get a regular text input instead.

These three <input> types are all variations of the
text <input> type. On desktop browsers you won’t
notice a difference. But on mobile browsers, you might
get a custom keyboard that makes it easier to get to
the characters you need, like / and @ and numbers.

Even with these specialized types, it’s up to you to make sure you know what values the server script is expecting and use the right <input> type.

658 Chapter 14

the bean machine

House Blend
Shade Grown Bolivia Supremo
Organic Guatemala
Kenya

Order Now

Starbuzz Coffee Starbuzz
 C

of
fe

e

Phone:

Number of bags:
Must arrive by date:

The Starbuzz Coffee website
is kicking butt. We’ve got a new

concept called the “Bean Machine,”
which is an online form to order

our coffees. Can you make it
happen?

A drop-down menu
of coffees

And a
submit
button

A choice
of whole or
ground coffee
(you can only
choose one)

Gift wrap
or include
a catalog
(choose zero,
one, or both)

A box for
customer
comments

Ship to
address,
consisting
of six text
boxes

Here's
what
the form
should
look like.

How many
bags, and
when they
should
arrive by

you are here 4 659

html forms

<input typ
e="text" .

..>
<input type="text

" .../>

Markup Magnets
Your job is to take the form element magnets and lay them on top
of the corresponding controls in the sketch. You won’t need all the
magnets below to complete the job; some will be left over. Check
your answer in the back of the chapter before moving on.

<input type="text"
 ...>

<input type="text" ...>

<input type="radio" ...>

<input type="checkbox" .../><input type="checkbox" ...><input type="checkbox" ...>

<input type="submit" .../>
<input type="submit" ...>

<input type="radio"
 ...>

<input type="radio" ...>

<textarea> ...<textarea/><textarea> ...<textarea>

<select> ...<select/>
<select> ...<select><select> ...<select>

<option> ...<option
/><option> ...<option/><option> ...<option>

<option> ...<option>

House Blend
Shade Grown Bolivia Supremo
Organic Guatemala
Kenya

Order Now

Phone:

Number of bags:
Must arrive by date:

<input type="number" ...><input type="number" ...>

<input type="range" ...><input type="range" ...>

<input type="color" ...>

<input type="date" ...>

<input type="tel" ...>

660 Chapter 14

creating the form

Getting ready to build the Bean Machine form
Before we start building that form, take a look inside the “chapter14/starbuzz”
folder, and you’ll find the file “form.html”. Open it and have a look around. All
this file has in it are the HTML basics:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>The Starbuzz Bean Machine</title>
 </head>
 <body>

 <h1>The Starbuzz Bean Machine</h1>
 <h2>Fill out the form below and click “order now” to order</h2>

 </body>
</html>

Figuring out what goes in the form element
It’s time to add your very first <form> element. The first thing you have to know
when creating a <form> element is the URL of the server script that is going to
process your form data. We’ve already taken care of that for you; you’ll find the
server script that processes Starbuzz orders here:

http://starbuzzcoffee.com/processorder.php

This URL points to the Starbuzz Coffee website…

All we’ve got so far is a
heading identifying the page,
along with instructions.

…and to the processorder.php server
script that’s on the server there.
This server script already knows
how to take orders from the form
we’re going to build.

The form is
going to go here.

For now, we’re going to build these
forms without all the style we’ve been
using on the Starbuzz site. That
way, we can concentrate on the form
HTML. We’ll add the style in later.

you are here 4 661

html forms

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>The Starbuzz Bean Machine</title>
 </head>
 <body>
 <h1>The Starbuzz Bean Machine</h1>
 <h2>Fill out the form below and click “order now” to order</h2>
 <form action="http://starbuzzcoffee.com/processorder.php" method="POST">

 </form>
 </body>
</html>

Adding the form element
Once you know the URL of the server script that will process your form, all you need
to do is plug it into the action attribute of your <form> element, like this (follow
along and type the changes into your HTML):

Here’s the
form element. The action attribute contains the

URL of the server script. And remember we’re using
the POST method to deliver
the form data to the server.
More on this later.Go ahead and add the

form closing tag too.
So far, so good, but an empty <form> element isn’t going to get you very far. Looking back
at the sketch of the form, there’s a lot there to add, but we’re going to start simple and get
the “Ship to” part of the form done first, which consists of a bunch of text inputs and a
number input. You already know a little about text inputs, but let’s take a closer look. Here’s
what the text inputs for the Starbuzz form look like:

<input type="text" name="name">

<input type="text" name="address">

<input type="text" name="city">

<input type="text" name="state">

<input type="text" name="zip">

<input type="tel" name="phone">

We’ve got one text
input for each input
area in the form:
Name, Address, City,
State, Zip, and Phone.

We use the <input>
element for a few
different controls.
The type attribute
determines what kind
of control it is.

Here the type is “tel” because we're expecting a telephone number for the value. The name attribute acts as an identifier for the
data the user types in. Notice how each one is set to
a different value. Let’s see how this works…

Here the type is “text” because this
is going to be a text input control.

662 Chapter 14

form element names

How form element names work
Here’s the thing to know about the name attribute: it acts as the glue between your
form and the server script that processes it. Here’s how this works:

<input type="text" name="name">

<input type="text" name="address">

<input type="text" name="city">

<input type="text" name="state">

<input type="text" name="zip">

<input type="tel" name="phone">

When you type the elements for a form into your HTML
file, you give them unique names. You saw this with the
text and tel inputs:

Each input control in your form has a
name attribute:

Each <input> element
gets its own name.

Say you type your name, address, city, state, zip, and
phone into the form and click Submit. The browser takes
each of these pieces of data and labels them with your
unique name attribute values. The browser then sends
the names and values to the server. Like this:

When you submit a form, the browser
packages up all the data using the
unique names:

What you enter into
the form.

What the browser packages
up for the server

The unique
names for each
form element

The server script needs the form data to be
labeled so it can tell what is what.

Notice here we’ve got an element whose

name is “name” (which is perfectly fine).

Each unique
name gets a
value from the
data you type
into the form.

name = Buckaroo Banzai

address = Banzai Institute

city = Los Angeles

state = CA

zip = 90050

phone = 310-555-1212

www.starbuzzcoffee.com

processorder.php

you are here 4 663

html forms

Q: What’s the difference between a
text <input> and a <textarea>?

A: You want to use a text <input> for
entering text that is just a single line, like
a name or zip code, and a <textarea> for
longer, multiline text.

Q: Can I make the submit button say
something other than “Submit”?

A: Yes, just put a value attribute in the
element and give it a value like “Order Now”.
You can also use the value attribute of text
input to give that input some default text.

Q: Is there a limit to how much
text I can type into a text <input> or a
<textarea>?

A: Browsers do place a limit on the
amount of text you can type into either a
text <input> or a <textarea>; however, it’s
usually way more than you’d ever need to
type. If you’d like to limit how much your
users can type into a text <input>, you can
use the maxlength attribute and set it to a
specific number of characters. For example,
maxlength=“100” would limit users to typing
at most 100 characters. However, for a
<textarea>, there is no way with HTML to
limit how much your users can type.

Q: The “tel”, “email”, and “url” look
just like text inputs. Is there really a
difference?

A: The “tel”, “email”, and “url” type inputs
all send text strings to the server script, so
in that way, they are basically the same as
a text type input. However, because the
browser knows that the type is “tel”, for
instance, it can be a bit smarter about the
user interface it provides to the user. So, on
some mobile browsers, the browser may
display a numeric phone keypad.

Q: I still don’t get how the names get
matched up with the form data.

A: Okay, you know each form element
has a unique name, and you also know
that the element has a corresponding value.
When you click the Submit button, the
browser takes all the names along with their
values and sends them to the server. For
instance, when you type the zip code “90050”
into a text <input> element with the name

“zip”, the browser sends “zip = 90050” to the
server when the form is submitted.

Q: How does the server script know
the names I’m going to use in my form?
In other words, how do I pick the names
for my form elements?

A: Good question. It really works the
other way around: you have to know what
form names your server script is expecting
and write your form to match it. If you’re
using a server script that someone else
wrote, he’ll have to tell you what names
to use, or provide that information in the
documentation for the script. A good place to
start is to ask your hosting company for help.

Q: Why doesn’t the <option> element
have a name attribute? Every other form
element does.

A: Good catch. All <option> elements
are actually part of the menu that is created
by the <select> element. So, we only really
need one name for the entire menu, and that
is already specified in the <select> element.
In other words, <option> elements don’t
need a name attribute because the <select>
has already specified the name for the entire
menu. Keep in mind that when the form is
submitted, only the value of the currently
selected option is sent along with this name
to the server.

Q: Didn’t you say that the name for
each form element needs to be unique?
But the radio <input> elements all have
the same name.

A: Right. Radio buttons come as a set.
Think about it: if you push one button in, the
rest pop out. So, for the browser to know
the radio buttons belong together, you use
the same name. Say you have a set of radio
buttons named “color” with values of “red”,

“green”, and “blue”. They’re all colors, and
only one color can be selected at a time, so
a single name for the set makes sense.

Q: What about checkboxes? Do they
work like radio buttons?

A: Yes; the only difference is that you are
allowed to select more than one choice with
a checkbox.
When the browser sends the form data to
the server, it combines all the checkbox
values into one value and sends them
along with the checkbox name. So, say you
had “spice” checkboxes for “salt”, “pepper”,
and “garlic”, and you checked them all;
then the browser would send “spice =
salt&pepper&garlic” to the server.

Q: Geez, do I really need to know all
this stuff about how data gets to the
server?

A: All you need to know is the names and
types of the form elements your server script
is expecting. Beyond that, knowing how it all
works sometimes helps, but, no, you don’t
need to know all the gory behind-the-scenes
details of what is being sent to the server.

664 Chapter 14

adding input elements

 <form action="http://starbuzzcoffee.com/processorder.php" method="POST">

 <p>Ship to:

 Name: <input type="text" name="name">

 Address: <input type="text" name="address">

 City: <input type="text" name="city">

 State: <input type="text" name="state">

 Zip: <input type="text" name="zip">

 Phone: <input type="tel" name="phone">

 </p>

 <p>

 <input type="submit" value="Order Now">

 </p>

 </form>

Back to getting those input elements into your HTML
Now we’ve got to get those <input> elements inside the form.
Check out the additions below, and then make the changes in
your “form.html” file.

Here’s JUST the form
snippet from “form.html”.
Hey, we’ve got to save a
few trees here!

We’re going to
start by putting
everything inside
a <p> element.

Nest elements directly
inside a form.

Here are all the
<input> elements:
one for each
input in the
“Ship to” section
of the form.

We’ve added a label for each
input so the user knows what
goes in the text input.

And you should also know that <input> is an
inline element, so if you want some linebreaks
between the <input> elements, you have to
add
s. That’s also why you need to nest
them all inside a paragraph.

Finally, don’t forget that users need a submit button to
submit the form. So add a submit button by inserting an
<input> at the bottom with a type of “submit”. Also add
a value of “Order Now”, which will change the text of the
button from “Submit” to “Order Now”.

After you’ve made all these changes, save your “form.html” file
and let’s give this a whirl. Don’t forget to validate your HTML.

Form elements need validation too!

you are here 4 665

html forms

A form-al test drive

Here’s the server script’s
response. It looks like the
script got what we submitted,
but we haven’t given it
everything it needs.

Reload the page, fill in the text inputs, and submit the form.
When you do that, the browser will package up the data
and send it to the URL in the action attribute, which is at
starbuzzcoffee.com.

You don’t think we’d give you a toy example
that doesn’t really work, do you? Seriously,
starbuzzcoffee.com is all ready to take your
form submission. Go for it!

Adding some more input elements to your form
It looks like the server script isn’t going to let us get very far without telling it the
beans we want, as well as the bean type (ground or whole). Let’s add the bean
selection first by adding a <select> element to the form. Remember that the
<select> element contains a list of options, each of which becomes a choice in
a drop-down menu. Also, associated with each choice is a value; when the form is
submitted, the value of the chosen menu option is sent to the server. Turn the page
and let’s add the <select> element.

Here’s the form.

And here’s the response
after submitting the form.

Notice the change in the
URL of your address bar
after you submit the form
(you’ll see the URL in the
form’s action attribute in
the address bar).

666 Chapter 14

using a select

Adding the select element

<option value="Guatemala">Organic Guatemala</option>

Each option has a value.

When the browser packages up the names
and values of the form elements, it uses
the name of the <select> element along
with the value of the chosen option.

In this case, the browser would send
the server beans = “Guatemala”.

The content of the
element is used as the label
in the drop-down menu.

Let’s take a closer look at the <option> element.

HTML Up Close

<form action="http://starbuzzcoffee.com/processorder.php" method="post">

 <p>
 Choose your beans:
 <select name="beans">
 <option value="House Blend">House Blend</option>
 <option value="Bolivia">Shade Grown Bolivia Supremo</option>
 <option value="Guatemala">Organic Guatemala</option>
 <option value="Kenya">Kenya</option>
 </select>
 </p>

 <p>
 Ship to:

 Name: <input type="text" name="name" value="">

 Address: <input type="text" name="address" value="">

 City: <input type="text" name="city" value="">

 State: <input type="text" name="state" value="">

 Zip: <input type="text" name="zip" value="">

 Phone: <input type="tel" name="phone" value="">

 </p>
 <p>
 <input type="submit" value="Order Now">
 </p>
</form>

Here’s our brand-new
<select> element. It gets a
unique name too.

Inside, we put each <option>
element, one per choice of coffee.

you are here 4 667

html forms

Test driving the select element
Let’s give the <select> element a spin now. Reload your page, and
you should have a nice new menu waiting for you. Choose your
favorite coffee, fill in the rest of the form, and submit your order.

We still haven’t given the server
script everything it needs, but
the script is getting everything
in the form so far.

Here’s the result of
the <select> choice.

Here are all the
text inputs and
the tel input.

Here’s the form, complete with
a <select> element. Notice all
the options are there.

Looks like Starbuzz
assumes we want 1 bag of
coffee if we don’t specify.

668 Chapter 14

providing choices

Change the <select> element name attribute to “thembeans”. Reload the form and resubmit
your order. How does this affect the results you get back from the server script?

Give the customer a choice of whole or ground beans
The customer needs to be able to choose whole or ground beans
for her order. For those, we’re going to use radio buttons. Radio
buttons are like the buttons on old car radios—you can push only
one in at a time. The way they work in HTML is that you create
one <input> of type “radio” for each button, so in this case you
need two buttons: one for whole beans and one for ground. Here’s
what that looks like:

<p>Type:

 <input type="radio" name="beantype" value="whole"> Whole bean

 <input type="radio" name="beantype" value="ground"> Ground

</p>

There are two
radio buttons here:
one for whole beans,
and one for ground.

We’re using the <input>
element for this, with its
type set to “radio”.

Here’s the unique name.
All radio buttons in the
same group share the
same name.

And here’s the value that will be
sent to the server script. Only
one of these will be sent (the
one that is selected when the
form is submitted).

Notice that we
often label radio
buttons on the
righthand side of
the element.

Make sure you change the name back to “beans” when you’re done with this exercise.

you are here 4 669

html forms

Punching the radio buttons
Take the radio button HTML on the previous page
and insert it into your HTML just below the paragraph
containing the <select> element. Make sure you reload
the page, and then submit it again.

Depending on your browser,
you may have noticed that
no radio button was pressed
when you reloaded the page.

Wow! Starbuzz took our order, and
we’re not even done with it yet. We’ve still got to add the number of bags,
the ship by date, the gift options, and an area for customer comments.

How could the order work without all the elements
being in the form? Well, it all depends on how
the server script is programmed. In this case, it is
programmed to process the order even if the gift
wrap, catalog options, and the customer comments
are not submitted with the rest of the form data. The
only way you can know if a server script requires
certain form elements is to talk to the person who
developed it, or to read the documentation.

670 Chapter 14

using more input types

If you add a Boolean attribute named “checked” into your radio input
element, then that element will be selected by default when the form
is displayed by the browser. Add the checked attribute to the "ground"
radio <input> element and give the page a test. You’ll find the solution
in the back of this chapter.

(Remember that Boolean attributes don’t need a value; if the attribute
checked is present, then the input control is checked.)

Hey, 80% of our customers
order ground beans. Can you

make it so the ground bean type
is already selected when the

user loads the page?

Using more input types
Next, we need to get the number of bags of coffee the customer wants to purchase, and
the arrive by date. Both of these are <input> elements, but rather than just using basic
text inputs, we can be more specific about the exact type of content we want in these
<input> elements by using the “number” type for the number of bags, and the “date”
type for the arrive by date.

For the number of bags, we can get even more specific, by specifying both a minimum
and maximum number of bags allowed:

Number of bags: <input type="number" name="bags" min="1" max="10">

Must arrive by date: <input type="date" name="date">

Now, if you try to enter more than 10 bags or fewer
than 1 bag, in browsers that support the “number”
<input> type, you’ll get an error message when you
try to submit the form indicating that the value you’ve
entered is not correct.

By using the “number” type and specifying the min and max number of
bags, we can restrict the input to a value that works for us (we don’t want
customers ordering more than 10 bags of one kind of coffee at a time!)

And by using the “date” type here,
browsers that support this type will
help out the customer by popping up
a date picker control.

You’ll get an error message if you try to enter more
(or less) than the allowed max or min.

you are here 4 671

html forms

<form action="http://starbuzzcoffee.com/processorder.php" method="post">
 <p>
 Choose your beans:
 <select name="beans">
 <option value="House Blend">House Blend</option>
 <option value="Bolivia">Shade Grown Bolivia Supremo</option>
 <option value="Guatemala">Organic Guatemala</option>
 <option value="Kenya">Kenya</option>
 </select>
 </p>
 <p>
 Type:

 <input type="radio" name="beantype" value="whole">Whole bean

 <input type="radio" name="beantype" value="ground" checked>Ground
 </p>

 <p>
 Number of bags: <input type="number" name="bags" min="1" max="10">
 </p>
 <p>
 Must arrive by date: <input type="date" name="date">
 </p>

 <p>
 Ship to:

 Name: <input type="text" name="name" value="">

 Address: <input type="text" name="address" value="">

 City: <input type="text" name="city" value="">

 State: <input type="text" name="state" value="">

 Zip: <input type="text" name="zip" value="">

 Phone: <input type="tel" name="phone" value="">

 </p>
 <p>
 <input type="submit" value="Order Now">
 </p>
</form>

Adding the number and date input types
Go ahead and add the two new <input> elements to your “form.html” file, below the
bean type <input>s and above the Ship To fields, and give your new code a test drive.

We’ve added the new code
here. Remember that
browsers may display these
differently, depending on
which browser you’re using.
Try more than one browser!

Turn the page to see the results of our test drive…

672 Chapter 14

test driving the form so far

Completing the form
You’re almost there. You’ve got just two controls
to add to the form: the “Extras” control with two
checkboxes and the customer comment control.
You’re really getting the hang of forms, so we’re
going to add them both at the same time.

The Extras section consists of two
checkboxes, one for gift wrap and
another to include a catalog.

It looks like the “Include catalog”
option should be checked by default.

The Customer
Comments section is
just a <textarea>.

Test driving the number and date input elements

Here’s what we entered
into the form. Notice
that the number input
has up/down arrows,
but the date control is
just a text input in this
browser (Chrome).

And here’s what the
Bean Machine returns.
Looks like we ordered
5 bags of coffee!

Phone:

Number of bags:
Must arrive by date:

you are here 4 673

html forms

<form action="http://starbuzzcoffee.com/processorder.php" method="post">
 <p>
 Choose your beans:
 <select name="beans">
 <option value="House Blend">House Blend</option>
 <option value="Bolivia">Shade Grown Bolivia Supremo</option>
 <option value="Guatemala">Organic Guatemala</option>
 <option value="Kenya">Kenya</option>
 </select>
 </p>
 <p>
 Type:

 <input type="radio" name="beantype" value="whole">Whole bean

 <input type="radio" name="beantype" value="ground" checked>Ground
 </p>
 <p>Number of bags: <input type="number" name="bags" min="1" max="10"></p>
 <p>Must arrive by date: <input type="date" name="date"></p>

 <p>
 Extras:

 <input type="checkbox" name="extras[]" value="giftwrap">Gift wrap

 <input type="checkbox" name="extras[]" value="catalog" checked>Include catalog
 with order
 </p>

 <p>
 Ship to:

 Name: <input type="text" name="name" value="">

 Address: <input type="text" name="address" value="">

 City: <input type="text" name="city" value="">

 State: <input type="text" name="state" value="">

 Zip: <input type="text" name="zip" value="">

 Phone: <input type="tel" name="phone" value="">

 </p>

 <p>Customer Comments:

 <textarea name="comments"></textarea>
 </p>

 <p>
 <input type="submit" value="Order Now">
 </p>
</form>

Adding the checkboxes and text area

Here we’ve added a checkbox for each option. Notice
that these share the same name, “extras[]”… …but have different values.

As with the
radio buttons,
we’ve put
these labels to
the right of
the checkboxes.

We’re using the
checked attribute
to specify that
the catalog option
should be checked
by default. You
can add a checked
attribute to more
than one checkbox.

Here’s the text area.

You know the drill: look over the new HTML and add it to your “form.html”.

674 Chapter 14

successful submission

The final form test drive
Save your changes, reload, and check out the new form.
Don’t you think it’s looking quite nice?

Here’s our brand-new
checkboxes, with the catalog
checkbox already checked.

And a nice new
text area as well

Be sure and try out all the
various combinations of sending
this form (with/without gift
wrap, with/without a catalog,
different coffees, and so on)
and see how it all works.

Here’s what you get when you submit.
The server script has received all
the form data on the page and has
incorporated it into the response
page. See if you can locate all the
form data you submitted.

you are here 4 675

html forms

Stop right there. Do you
think I didn’t see the way

you slipped in that element name
of “extras[]”? What’s with those

square brackets! You have to
explain that.

But even if it’s valid, it doesn’t exactly look
normal, does it? Here’s the deal: from the
perspective of HTML, this is a normal form
element name; it doesn’t have any effect on
the browser at all if it has square brackets in
the name.

So why did we use them? It turns out that the
scripting language that the “processorder.php”
server script is written in (PHP) likes a little
hint that a form variable may have multiple
values in it. The way you give it this hint is to
add “[]” on the end of the name.

So, from the perspective of learning HTML,
you can pretty much forget about all this, but
you might just tuck this into the back of your
mind in case you ever write a form that uses a
PHP server script in the future.

Believe it or not, “extras[]”
is a perfectly valid name for
a form element.

676 Chapter 14

match the form names

<form action="http://www.chooseyourmini.com/choice.php" method="POST">
 <p>Your information:

 Name: <input type="text" name="name">

 Zip: <input type="text" name="zip">

 </p>
 <p>Which model do you want?

 <select name="model">
 <option value="cooper">Mini Cooper</option>
 <option value="cooperS">Mini Cooper S</option>
 <option value="convertible">Mini Cooper Convertible</option>
 </select>
 </p>
 <p>Which color do you want?

 <input type="radio" name="color" value="chilired"> Chili Red

 <input type="radio" name="color" value="hyperblue"> Hyper Blue
 </p>
 <p>Which options do you want?

 <input type="checkbox" name="caroptions[]" value="stripes"> Racing Stripes

 <input type="checkbox" name="caroptions[]" value="sportseats"> Sport Seats
 </p>

 <p>
 <input type="submit" value="Order Now">
 </p>

</form>
Here’s the form.

BE the Browser
Below, you’ll find an HTML form, and on the right the data a
user entered into the form. Your job is to play like you’re the
browser and match each form element name with the values the

user entered. After you’ve done the exercise, look
at the end of the chapter to see if you matched up
the form names with the values correctly.

you are here 4 677

html forms

And here’s the form filled out.

Match each piece of form data with its form name and put your answers here.

“Buckaroo Banzai”

Extra credit…

name =

zip =

model =

color =

caroptions[] =

678 Chapter 14

form methods: get and post

Now that we’ve got the form
finished, can we talk about the method

the browser uses to send this data to the
server? We’ve been using POST, but you

said there are other methods, too.

POST and GET accomplish the same thing—getting
your form data from the browser to a server—but in
two different ways. POST packages up your form
variables and sends them behind the scenes to your
server, while GET also packages up your form variables,
but appends them on the end of the URL before it
sends a request to the server.

There are two primary methods the
browser uses: POST and GET.

With POST, all the form data is sent as part of
the request and is invisible to the user.

POST

GET

http://wickedlysmart.com/hfhtmlcss/contest.php

http://wickedlysmart.com/hfhtmlcss/contest.php?firstname=buckaroo&lastname=banzai

With GET, the form data is added to the URL
itself, so the user sees the form data.

The user just sees
the server script’s
URL in her browser
address bar.

Notice the form
data added on
to the end of
the URL. This
is what the
user sees in the
address bar.

Server
Script

Server
Script

you are here 4 679

html forms

Q: Why is it called GET if we’re
sending something to the server?

A: Good question. What’s the main job of
a browser? To get web pages from a server.
And when you are using GET, the browser
is just going about getting a web page in the
normal way it always does, except that, in
the case of a form, it has appended some
more data to the end of the URL. Other than
that, the browser just acts like it’s a normal
request.
With POST, on the other hand, the browser
actually creates a little data package and
sends it to the server.

Q: So why would I use POST over GET,
or vice versa?

A: There are a couple of big differences
that really matter. If you want users to be
able to bookmark pages that are the result
of submitting a form, then you have to use
GET, because there is no way to bookmark
a page that has been returned as a result of
a POST. When would you want to do that?
Say you have a server script that returns a
list of search results; you might want users
to be able to bookmark those results so they
can see them again without having to fill out
a form.
On the other hand, if you have a server
script that processes orders, then you

wouldn’t want users to be able to bookmark
the page. (Otherwise, every time they
returned to the bookmark, the order would
be resubmitted.)
A situation when you’d never want to use
a GET is when the data in your form is
private, like a credit card or a password.
Because the URL is in plain view, the private
information is easily found by others if they
look through your browser history or if the
GET somehow gets bookmarked.
Finally, if you use a <textarea>, you should
use POST, because you’re probably sending
a lot of data. Both GET and POST requests
have a limit on the amount of data you can
send, but the limit on a POST request is
usually much larger.

Watching GET in action
There’s no better way to understand GET than to see it in action.
Open up your “form.html” file and make the following small change:

<form action="http://starbuzzcoffee.com/processorder.php" method="GET">

Just change the method
from “POST” to “GET”.

Save and reload the page; then fill out the form and submit it. You
should see something like this:

You’ll see this URL
in your browser.

Now you can see every form
element name and its values
right here in the URL.

Notice that the browser encodes
various characters, like spaces. The
server script will automatically decode
these when it receives them.

http://starbuzzcoffee.com/processorder.php?beans=Kenya&beantype=ground&
extras%5B%5D=catalog&name=Buckaroo+Banzai&address=Banzai+Institute&city=
Los+Angeles&state=CA&zip=90050&phone=3105551212&comments=Great+coffee

680 Chapter 14

test yourself: get and post

For each description, circle either GET or POST
depending on which method would be more
appropriate. If you think it could be either, circle
both. But be prepared to defend your answers…

GET or POST

GET POST A form for typing in a username and password.

GET POST A form for ordering CDs.

GET POST A form for looking up current events.

GET POST A form to post book reviews.

GET POST A form for retrieving benefits by your government ID number.

GET POST A form to send customer feedback.

you are here 4 681

html forms

I’ve been meaning to
say, great job on the Bean Machine!
This is really going to boost our coffee

bean sales. All you need to do is give this a
little style, and we’re ready to launch it
for our customers.

Given everything you
know about HTML
and CSS, how would
you approach styling
this form?

682 Chapter 14

deciding how to style the form

Forms are usually tabular in their layout, so you’ll probably find that using a CSS table display
layout works well for designing your form’s presentation…and that’s what we’ll use to lay out
the Bean Machine form. With this table display layout, the page will look like a real form rather
than a ragged collection of input elements, and it will be easier to read.

Before we do that, let’s figure out the table structure that is inherent in this form. Starting with
the sketch below, fit the elements into a table (hint: we found it fits nicely into 2 columns and 14
rows), so each row is represented with a block element, and each cell is also represented with a
block element. Notice you may have to add some structure to the HTML to make this work.

No peeking at the next page before you do the
exercise. Really! Cover it up or something.

you are here 4 683

html forms

Forms are usually tabular in their layout, so you’ll probably find that using a CSS
table display layout works well for designing your form’s presentation…and that’s

what we’ll use to lay out the Bean Machine form. With this table display layout, the page will look
like a real form rather than a ragged collection of input elements, and it will be easier to read.

Before we do that, let’s figure out the table structure that is inherent in this form. Starting with the
sketch below, fit the elements into a table (hint: we found it fits nicely into 2 columns and 14 rows),
so each row is represented with a block element, and each cell is also represented with a block
element. Notice you may have to add some structure to the HTML to make this work.

Here’s the sketch of the table.
It’s a simple table display layout,
with 2 columns and 14 rows—
1 row for each main part of the
form.

We’ve thrown all the input
elements into the righthand
column.

Remember that each cell corresponds to a block element, so we'll add some more <p> elements to make sure we've got a separate block element for each cell.

The labels for
each form
element go in
the left column.

The cell on
the left of
the submit
button is
empty. There’s
no label to
put here.

Notice that we’ve grouped each set of checkboxes and radio buttons into one cell.

And we'll also need some extra
block elements for the rows. We'll
use <div> elements, just like we
did before (in Chapter 11).

The cell on
the right
of “Ship
to” is empty;
there’s no
control here.

The cell values
are all aligned
vertically to
the top.

And finally, we’ll need one element
that contains everything, for the
table itself. We can use the form
element for this!

Here’s what we came up with…compare to your
solution before moving on!

We made the text area bigger too!

684 Chapter 14

structuring html for styling the form

Getting the form elements into HTML
structure for table display layout
Now that you know how to organize the form elements in a table display layout,
you need to put your HTML writing skills to the test. So get typing!

Just kidding. We wouldn’t make you type all this…after all, this chapter is really
about forms, not table display layout. We already typed this in for you; it’s in the
file “styledform.html” in the “chapter14/starbuzz” folder. Even though it looks
complicated, it’s really not that bad. We’ve added a few annotations below to point
out the main parts.

Here’s the <form> element;
we’re going to use this
element for the “table”
part of the display.

Ready Bake
HTML

<form action="http://starbuzzcoffee.com/processorder.php" method="post">
 <div class="tableRow">
 <p>
 Choose your beans:
 </p>
 <p>
 <select name="beans">
 <option value="House Blend">House Blend</option>
 <option value="Bolivia">Shade Grown Bolivia Supremo</option>
 <option value="Guatemala">Organic Guatemala</option>
 <option value="Kenya">Kenya</option>
 </select>
 </p>
 </div>
 <div class="tableRow">
 <p> Type: </p>
 <p>
 <input type="radio" name="beantype" value="whole"> Whole bean

 <input type="radio" name="beantype" value="ground" checked> Ground
 </p>
 </div>
 <div class="tableRow">
 <p> Number of bags: </p>
 <p> <input type="number" name="bags" min="1" max="10"> </p>
 </div>
 <div class="tableRow label">
 <p> Must arrive by date: </p>
 <p> <input type="date" name="date"> </p>
 </div>
 <div class="tableRow">
 <p> Extras: </p>
 <p>
 <input type="checkbox" name="extras[]" value="giftwrap"> Gift wrap

 <input type="checkbox" name="extras[]" value="catalog" checked>
 Include catalog with order
 </p>
 </div>

For the bean selection menu, the “beantype” radio
buttons, and the “extras” checkboxes, we put all
the form elements for each menu in one data cell.

We’re using a <div> with
the class “tableRow” for
each row in the table.

And the content for each cell is
nested inside a <p> element.

Code continues on the next page.

you are here 4 685

html forms

 <div class="tableRow">
 <p class="heading"> Ship to </p>
 <p></p>
 </div>
 <div class="tableRow">
 <p> Name: </p>
 <p> <input type="text" name="name" value=""> </p>
 </div>
 <div class="tableRow">
 <p> Address: </p>
 <p> <input type="text" name="address" value=""> </p>
 </div>
 <div class="tableRow">
 <p> City: </p>
 <p> <input type="text" name="city" value=""> </p>
 </div>
 <div class="tableRow">
 <p> State: </p>
 <p> <input type="text" name="state" value=""> </p>
 </div>
 <div class="tableRow">
 <p> Zip: </p>
 <p> <input type="text" name="zip" value=""> </p>
 </div>
 <div class="tableRow">
 <p> Phone: </p>
 <p> <input type="tel" name="phone" value=""> </p>
 </div>
 <div class="tableRow">
 <p> Customer Comments: </p>
 <p>
 <textarea name="comments" rows="10" cols="48"></textarea>
 </p>
 </div>
 <div class="tableRow">
 <p></p>
 <p> <input type="submit" value="Order Now"> </p>
 </div>
</form>

For the row containing just the label “Ship to”, we’ve added a class “heading” to the <p> so we can bold this text.

Notice that we’ve also got an empty cell
in the right column, so we can just put an
empty <p> element here.

And for the last row, we’ve got
an empty cell in the left column,
so again, we can use an empty <p>
element for that.

All the rows are
straightforward: a
“tableRow” <div> for the
row, and each cell in a <p>.

Ready Bake
HTML

686 Chapter 14

styling the form

Styling the form with CSS

body {
 background: #efe5d0 url(images/background.gif) top left;
 margin: 20px;
}

form {
 display: table;
 padding: 10px;
 border: thin dotted #7e7e7e;
 background-color: #e1ceb8;
}

form textarea {
 width: 500px;
 height: 200px;
}

div.tableRow {
 display: table-row;
}

div.tableRow p {
 display: table-cell;
 vertical-align: top;
 padding: 3px;
}

div.tableRow p:first-child {
 text-align: right;
}

p.heading {
 font-weight: bold;
}

We’ve got all the structure we need, so now we just need to add a few styling rules
and we’ll be done. Because this form is part of the Starbuzz site, we’re going to
reuse some of the style in the “starbuzz.css” stylesheet, and create a new stylesheet,

“styledform.css”, to add new style rules for the Bean Machine form. All of this CSS
should be familiar to you now. We’re not using any rules unique to forms; it’s all
just the same stuff you’ve been using in the last few chapters.

You’ll find this CSS in the file “styledform.css” in the folder “chapter14/starbuzz”.

We’re going to rely on the Starbuzz CSS for some of
our style, but we’re adding the Starbuzz background
image, and a margin to the body.

…and adding a border around the form, and
some padding between the form content
and the border, and a background color to
offset it from the background.

Each “tableRow” <div> acts as a row in
the table display layout.

Each <p> element that is nested in a “tableRow” <div> is a table cell. We vertically align the content in each <p> so the content in each row lines up at the top of the cells. And we’re adding a bit of padding here too, to add space between the rows.

This rule uses the first-child pseudo-element on the selector
for <p> elements nested inside “tableRow” <div>s. This means
the first <p> element in each row is aligned to the right, so
they all line up vertically against the right side of the column.

Ready Bake
CSS

We’re using the form to represent the
table in the table display…

And for any <p> elements with the class “heading”, we bold the
text so it looks like a heading. We use this in the “Ship to” cell.

We’re making the textarea control in the
form bigger, so there’s more room for
comments by setting its width and height.

you are here 4 687

html forms

Test drive the styled form
You’re going to add two <link> elements to the <head> of your
HTML in “styledform.html”, linking in the Starbuzz stylesheet from
Chapter 12, “starbuzz.css”, and your new stylesheet, “styledform.css”.
Make sure you get the order correct: link the “starbuzz.css” file first,
then the “styledform.css”. Once you’ve got the two stylesheets linked,
save and reload your page. You should see the snazzy, styled version
of the Starbuzz Bean Machine in your browser.

Wow, what a difference a little style makes!

The labels are
aligned with the
top of the form
elements, and
they’re aligned to
the right as well.
This alignment
makes it easier to
see which labels
belong with which
controls.

The space between
the rows makes a
big difference and
makes the form
much easier to read.

The Bean Machine form now matches
the rest of the Starbuzz site better.

The “Ship to”
heading is bold,
just like we wanted.

If you want to stretch your HTML
and CSS skills a bit, see if you
can add the Starbuzz header and
footer to the Bean Machine page
and make the Bean Machine look
really nice with those elements.

We’ve got two columns and all the content in the rows lines up nicely!

688 Chapter 14

forms and accessibility

So far we’ve been labeling our form elements with simple text, but we should
really be using the <label> element to mark up these labels. The <label>
element provides further information about the structure of your page, allows
you to style your labels using CSS more easily, and helps screen readers for the
visually impaired to correctly identify form elements.

<input type="radio" name="hotornot" value="hot" id="hot">
<label for="hot">hot</label>

<input type="radio" name="hotornot" value="not" id="not">
<label for="not">not</label>

To use a <label> element, first add an
id attribute to your form element.

Then add a <label> and set its “for”
attribute to the corresponding id.

A word about accessibility

<label for="bags">Number of bags:</label>
<input type="number" id="bags" name="bags" min="1" max="10">

By default, labels don’t look any different from just normal text. However, they can
make a big difference when it comes to accessibility. You can use the <label> element
with any form control, so we can add a label to each part of our Bean Machine form.
For instance, we could add a label to the number input for the number of bags like this:

Now the text next to these
radio buttons is a label.

We’ve added the id “bags”
to the <input> element.

It’s okay to have the name and id
attributes use the same value, in
this case, “bags”.

<input type="radio" id="whole_beantype" name="beantype" value="whole">
 <label for="whole_beantype">Whole bean</label>

<input type="radio" id="ground_beantype" name="beantype" value="ground" checked>
 <label for="ground_beantype">Ground</label>

The name of both controls is “beantype", so they are grouped together when you submit the form to the server script.

When you add labels to radio or checkbox controls, remember that the id of each
control needs to be unique, even though the name of all the controls in a group is the
same. So, to add labels to the “beantype” radio control in the Bean Machine, create
unique ids for both the whole and ground options:

But each id needs to be unique.

Notice that a label can come before or after the control
it’s associated with; as long as the value of the for attribute
matches the id, it doesn’t matter where the label is.

We’ve created a complete version
of the Bean Machine with labels,
and updated the CSS to go with
it. Check out accessform.html
and accessform.css in the code
downloads.

you are here 4 689

html forms

What more could possibly go into a form?
We’ve covered just about everything you’ll regularly use in your forms, but there are
a few more items you might want to consider adding to your form répertoire. We’re
including them here just in case you want to take your own form studies even further.

When your forms start getting large, it can be helpful to visually group
elements together. While you might use <div>s and CSS to do this,
HTML also provides a <fieldset> element that can be used to
group together common elements. <fieldset> makes use of a second
element, called <legend>. Here’s how they work together:

Fieldsets and legends

Here’s how the fieldset
and legend look in one
browser. You’ll find
that browsers display
them differently.

<fieldset>
 <legend>Condiments</legend>
 <input type="checkbox" name="spice" value="salt">
 Salt

 <input type="checkbox" name="spice" value="pepper">
 Pepper

 <input type="checkbox" name="spice" value="garlic">
 Garlic
</fieldset>

The <fieldset> element surrounds a
set of input elements.

The <legend> provides a
label for the group.

The password <input> element works just like the text <input>
element, except that the text you type is masked. This is useful
for forms that require you to type in a password, a secret code, or
other sensitive information that you may not want other people to
see as you type. Keep in mind, however, that the form data is not
sent from the browser to the server script in a secure way, unless
you make it secure. For more on security, contact your hosting
company.

Passwords

<input type="password" name="secret">

The password <input> element works
exactly like the text <input> element,
except the text you type is masked.

690 Chapter 14

other form elements

Here’s a whole new input element we haven’t talked about. If
you need to send an entire file to a server script, you’ll once
again use the <input> element, but this time set its type to “file”.
When you do that, the <input> element creates a control that
allows you to select a file and—when the form is submitted—the
contents of the file are sent with the rest of your form data to the
server. Remember, your server script will need to be expecting a
file upload, and also note that you must use the POST method to
use this element.

File input

This isn’t an element, but rather a new way to use an element
you already know. If you add the Boolean attribute multiple to
your <select> element, you turn your single-choice menu into
a multiple-choice menu. Instead of a pop-down menu, you’ll get
a multiple-choice menu that shows all the options on the screen
(with a scroll bar if there are a lot of them); you can choose more
than one by holding down the Ctrl (Windows) or Command
(Mac) key as you select.

Multiple selection

<select name="characters" multiple>
 <option value="Buckaroo">Buckaroo Banzai</option>
 <option value="Tommy">Perfect Tommy</option>
 <option value="Penny Priddy">Penny</option>
 <option value="New Jersey">Jersey</option>
 <option value="John Parker">John</option>
</select>

<input type="file" name="doc">

Here’s what the file input element looks like in a couple of different browsers.

To create a file input element, just set the
type of the <input> element to “file”.

Just add the attribute
multiple to turn a single
selection menu into a multiple
selection menu.

With multiple
selection, you
can choose more
than one option
at a time.

More things that can go in a form

you are here 4 691

html forms

You can use the placeholder attribute with most of the <input>
types in a form to give the person who’s filling out the form a
hint about the kind of content you expect him to enter into the
control. For instance, if you have a text field that expects a first and
last name, you can provide a sample first and last name using the
placeholder attribute. The value in the attribute is shown in the
control, but is fainter than normal content that you add to a control,
and as soon as you click into the text field, the placeholder text will
disappear so it doesn’t get in the way of what you’re typing.

Placeholder

This is an attribute you can use with any form control; it indicates
that a field is required, so you shouldn’t submit the form without
specifying a value for the controls that have this attribute set. In
browsers that support this attribute, if you try to submit the form
without specifying a value for a required field, you’ll get an error
message and the form will not be submitted to the server.

Notice that this attribute is another Boolean attribute, like we saw in
the <video> element. That just means that the value of the attribute
is simply “there” or “not there.” That is, if the attribute’s there, then
it’s set, and if the attribute’s not there, then it’s not set. So in this
example, required is there, so that means the attribute is set and
the field is required to submit the form.

Required

<input type="text" placeholder="Buckaroo Banzai">

<input type="text" placeholder="Buckaroo Banzai" required>

The placeholder attribute allows you
to provide a hint about the kind
of content you’re expecting in this
part of the form.

If you leave this field blank and submit the form, the placeholder content is NOT submitted as the value for the control!

required is a Boolean attribute, so if it’s in
the form control, that means the field must
have a value for the form to submit correctly.

This is a screenshot from Chrome. As of this writing, not all browsers support required, but you can put it there anyway. You’ll be able to submit the form, but then of course, the server script will complain that you haven’t filled in the field.

Edit your “styledform.html” file and add placeholders to each of the text <input>s and the tel <input>. Choose
values that will give the customer a good hint about what kind of content is expected in each field.

Next, edit the same file and add the required attribute to each form field that is required by the Starbuzz Bean
Machine (all the “Ship to” fields). Because beans and beantype have default values, do you really need required
on those fields? What happens if you remove the checked attribute from beantype; do you need required then?
Experiment with different browsers and see which browsers support placeholder and required.

692 Chapter 14

review of forms

 � The <form> element defines the form, and all form
input elements are nested inside it.

 � The action attribute contains the URL of the
server script.

 � The method attribute contains the method of
sending the form data: either POST or GET.

 � A POST packages form data and sends it as part
of the request.

 � A GET packages form data and appends it to the
URL.

 � Use POST when the form data should be private,
or when it is large, such as when a <textarea> or
file <input> element is used.

 � Use GET for requests that might be bookmarked.

 � The <input> element can act as many different
input controls on the web page, depending on the
value of its “type” attribute.

 � A type of “text” creates a single-line text input.

 � A type of “submit” creates a submit button.

 � A type of “radio” creates one radio button. All radio
buttons with the same name make up a group of
mutually exclusive buttons.

 � A type of “checkbox” creates one checkbox
control. You can create a set of choices by giving
multiple checkboxes the same name.

 � A type of “number” creates a single-line text input
that expects numeric characters only.

 � A type of “range” creates a slider control for
numeric input.

 � A “color” type creates a color picker in browsers
that support this type (and a text input otherwise).

 � A “date” type creates a date picker in browsers
that support this type (and a text input otherwise).

 � The “email”, “url”, and “tel” types create single-
line text inputs that cause custom keyboards to
appear on some mobile browsers for easier data
entry.

 � A <textarea> element creates a multiline text input
area.

 � A <select> element creates a menu, which
contains one or more <option> elements.
<option> elements define the items in the menu.

 � If you put text into the content of a <textarea>
element, it will become the default text in a text
area control on the web page.

 � The value attribute in the text <input> element can
be used to give a single-line text input an initial
value.

 � Setting the value attribute on a submit button
changes the text of the button.

 � When a web form is submitted, the form data
values are paired with their corresponding names,
and all names and values are sent to the server.

 � CSS table display is often used to lay out forms,
given that forms have a tabular structure. CSS
can also be used to style the form’s color, font
styles, borders, and more.

 � HTML allows form elements to be organized with
the <fieldset> element.

 � The <label> element can be used to attach labels
to form elements in a way that aids accessibility.

 � Use the placeholder attribute to give the form user
a hint about the kind of content you expect in a
field.

 � The required attribute indicates a field is required
for the form to be submitted correctly. Some
browsers will force you to enter data into these
fields before submitting the form.

you are here 4 693

html forms

House Blend
Shade Grown Bolivia Supremo
Organic Guatemala
Kenya

Order Now

Phone:

Number of bags:
Must arrive by date:

We didn’t
need these. <input type="text" ...>

<input type="text" ...>

<input type="text" ...>

Markup Magnets Solution
Your job was to take the form element magnets and lay them on
top of the corresponding controls in the sketch. You didn’t need
all the magnets below to complete the job; some were left over.
Here’s our solution.

<input type="text"
 ...>

<input type="text" ...>

<input type="tel" ...>

<input type="radio" ...>
<input type="checkbox" ...>

<input type="checkbox" ...>

<input type="checkbox" ...>

<input type="submit" ...>

<input type="submit" .../>

<input type="radio"
 ...>

<input type="radio" ...>

<textarea> ...<textarea> <textarea> ...<textarea>
<select> ...<select><select> ...<select>

<option> ...<option
>

<option> ...<option>

<option> ...<option>

<option> ...<option>

<input type="number" ...>

<input type="range" ...>

<input type="color" ...>

<input type="date" ...>

<select> ...<select>

694 Chapter 14

exercise solutions

BE the Browser Solution

“Buckaroo Banzai”name =

zip =

model =

color =

caroptions[] =

“90050”
“convertible”
“chilired”

“stripes”

For each description, circle either GET or POST
depending on which method would be more
appropriate. If you think it could be either, circle
both. But be prepared to defend your answers…

GET or POST

GET POST A form for typing in a username and password.

GET POST A form for ordering CDs.

GET POST A form for looking up current events.

GET POST A form to post book reviews.

GET POST A form for retrieving benefits by your government ID number.

GET POST A form to send customer feedback.

you are here 4 695

html forms

If you add an attribute called checked with a value of “checked”
into your radio input element, then that element will be
selected by default when the form is displayed by the browser.
Add the checked attribute to the “ground” radio <input>
element and give the page a test. Here’s the solution.

Hey, 80% of our customers
order ground beans. Can you

make it so the ground bean type
is already selected when the

user loads the page?

<form action="http://starbuzzcoffee.com/processorder.php" method="POST">
 ...
 <p>Type:

 <input type="radio" name="beantype" value="whole"> Whole bean

 <input type="radio" name="beantype" value="ground" checked> Ground

 </p>
 ...
</form>

Here’s just the relevant section
of the form in “form.html”.

And here’s the new attribute
that selects the “Ground”
radio button.

696 Chapter 14

Wouldn’t it be dreamy if this
were the end of the book? If there
were no bullet points or puzzles or

HTML listings or anything else? But
that’s probably just a fantasy…

Of course, there’s still an appendix.

And the index.

And the colophon.

And then there’s the website…

There’s no escape, really.

Congratulations!
You made it to the end.

this is a new chapter 697

We covered a lot of ground, and you’re almost finished
with this book. We’ll miss you, but before we let you go, we wouldn’t feel

right about sending you out into the world without a little more preparation. We

can’t possibly fit everything you’ll need to know into this relatively short chapter.

Actually, we did originally include everything you need to know about HTML and

CSS (not already covered by the other chapters), by reducing the type point size

to .00004. It all fit, but nobody could read it. So, we threw most of it away, and

kept the best bits for this Top Ten appendix.

Appendix: leftovers

The Top Ten Topics
 (We Didn’t Cover)

698 Chapter 15

specialized selectors

#1 More CSS selectors
While you’ve already learned the most common selectors, here are a few
more you might want to know about…

p:first-letter {
 font-size: 3em;
}
p:first-line {
 font-style: italic;
}

Pseudo-elements use the same syntax as pseudo-classes.

Pseudo-elements
You know all about pseudo-classes, and pseudo-elements are similar.
Pseudo-elements can be used to select parts of an element that you can’t
conveniently wrap in a <div> or a or select in other ways. For
example, the :first-letter pseudo-element can be used to select the first
letter of the text in a block element, allowing you to create effects like initial
caps and drop caps. You can use the :first-line pseudo-element to select
the first line of a paragraph. Here’s how you’d use both to select the first
letter and line of a <p> element:

Here we’re making the first
letter of the paragraph large,
and the first line italic.

img[width] { border: black thin solid; }

img[height="300"] { border: red thin solid; }

image[alt~="flowers"] { border: #ccc thin solid; }

Attribute selectors
Attribute selectors are exactly what they sound like: selectors that
allow you to select elements based on attribute values. You use them
like this:

This selector selects all
images that have a width
attribute in their HTML.

This selector selects all images that have a height attribute with a value of 300. This selector selects all images
that have an alt attribute that
includes the word “flowers”.

you are here 4 699

leftovers

Selecting by siblings
You can also select elements based on their preceding sibling. For example, say you want to select
only paragraphs that have an <h1> element preceding them, then you’d use this selector:

h1+p {
 font-style: italic;
}

This selector selects all paragraphs that
come immediately after an <h1> element.

Combining selectors
You’ve already seen examples of how selectors can be combined in this book. For instance, you
can take a class selector and use it as part of a descendant selector, like this:

.blueberry p { color: purple; } Here we’re selecting all paragraphs
that are descendants of an element
in the blueberry class.

There’s a pattern here that you can use to construct quite complex selectors. Let’s step through
how this pattern works:

 Start by defining the context for the element you want to select, like this:

 div#greentea > blockquote

 Then supply the element you want to select:

 div#greentea > blockquote p

 Then specify any pseudo-classes or pseudo-elements:

 div#greentea > blockquote p:first-line { font-style: italic; }

Here we’re using a descendant selector
where a <div> with an id “greentea” must
be the parent of the <blockquote>.

Next, we add the <p> element as the element
we want to select in the context of the
<blockquote>. The <p> element must be a
descendant of <blockquote>, which must be a
child of a <div> with an id of “greentea”.

Then we add a pseudo-element, first-line, to

select only the first line of the
 paragraph.

That’s a quite complex selector! Feel
free to construct your own selectors
using this same method.

Write the preceding element, a + (plus sign),
and then the sibling element.

context ele
me

nt

context elem
ent

1

2

3

700 Chapter 15

properties on the cutting edge

The browser makers (in other words, vendors like Microsoft, Mozilla, the
folks behind WebKit, and so on) often add new functionality to their
browsers to test new features, or to implement CSS extensions that are
being considered, but aren’t yet approved by the standards bodies. In these
cases, vendors create CSS properties that look like this:

You should feel free to make use of these vendor-specific properties, but
they aren’t necessarily intended for use in shipping products—the property
may never be approved as a legit standard, or the vendor may change the
implementation of the property at any time. That said, many of us need to
be able to create pages that use the latest and greatest technology, but do so
knowing that you’re using properties that may change.

If you’re going to make use of these properties, then often you’ll create CSS
that looks like this:

 div {
 transform: rotate(45deg);
 -webkit-transform: rotate(45deg);
 -moz-transform: rotate(45deg);
 -o-transform: rotate(45deg);
 -ms-transform: rotate(45deg);
 }

You can typically find these vendor-specific properties in the developer
documentation and release notes for each browser, or by participating in the
forums associated with each browser’s development process.

And, if you’re wondering what the transform property really does, check out
the “#3 CSS transforms and transitions” section on the next page.

#2 Vendor-specific CSS properties

Start with a dash “-”

The vendor identifier; here,
it’s “moz” for Mozilla The property

First, we list the general property
in case it is supported, or gets
supported in the future.

Then we list the
known vendor-
specific versions.

-moz-transform

Another dash “-”

Safari & Chrome
Mozilla
Opera
IE

you are here 4 701

leftovers

#3 CSS transforms and transitions

<!doctype html>

<html>

<head>

 <meta charset="utf-8">

 <title>CSS Transforms and Transitions</title>

 <style>

 #box {

 position: absolute;

 top: 100px;

 left: 100px;

 width: 200px;

 height: 200px;

 background-color: red;

 }

 #box:hover {

 transform: rotate(45deg);

 -webkit-transform: rotate(45deg);

 -moz-transform: rotate(45deg);

 -o-transform: rotate(45deg);

 -ms-transform: rotate(45deg);

 }

 </style>

</head>

<body>

 <div id="box"></div>

</body>

</html>

Mouse over the <div>
to see it rotate!

Using CSS, you can now do full-blown 2D and 3D transformations on
elements. Rather than talk about it, let’s look at an example (type this
one in; it’s worth it!).

Here’s the <div> we’re
transforming.

Here’s the basic style for
the “box” <div> below…

The position is absolute (aren’t you glad you stuck
with us all through that positioning chapter?).

And let’s give the <div> a position and size…
…and make it red.

This style rule applies ONLY if the <div> is
in the hover state…yes, you can hover over
<div>s too!
When you’re hovering your mouse over the
<div>, we transform the element by rotating
it 45 degrees.

We still need browser-specific extensions for these.

Go ahead and type this in and then give it a test drive.
When you pass our mouse over the “box” <div>, you
should see it transform so that it is rotated by 45 degrees.
Now, what if we want to make that transformation
smooth with a nice animation? That’s where transitions
come in…so, turn the page.

This will only
work in IE9+.

702 Chapter 15

css transitions and transforms

#box {
 position: absolute;
 top: 100px;
 left: 100px;
 width: 200px;
 height: 200px;
 background-color: red;
 transition: transform 2s;
 -webkit-transition: -webkit-transform 2s;
 -moz-transition: -moz-transform 2s;
 -o-transition: -o-transform 2s;
}
#box:hover {
 transform: rotate(45deg);
 -webkit-transform: rotate(45deg);
 -moz-transform: rotate(45deg);
 -o-transform: rotate(45deg);
 -ms-transform: rotate(45deg);
}

IE currently (as of
version 9) has no support
for transition, but may
in version 10. So you
won’t see the animation
if you’re using IE.

We can add the transition property to the “box” <div> rule to have it
transform to its new state over two seconds. Here’s how we do that:

The value of the transition property is another property, in this case
transform, and a duration, in this case two seconds. When the value of
the specified property changes, the transition causes that change to happen
over the specified duration, which creates an animation effect. You can
transition other CSS properties too, like width or opacity.

The transition property says: “If the value of the transform
property changes, transition from the current value of transform
to the new value of transform over the specified duration.”

The default value of transform is
nothing; that is, there is no transform.
But when you hover your mouse over
the box, the value of transform is
changed to a 45-degree rotation. So
the transition from no transform to a
45-degree rotation transform happens
over two seconds.

Two seconds

you are here 4 703

leftovers

<script>

 window.onload = init;

 function init() {

 var submitButton = document.getElementById("submitButton");

 submitButton.onclick = validBid;

 }

 function validBid() {

 if (document.getElementById("bid").value > 0) {

 document.getElementById("theForm").submit();

 } else {

 return false;

 }

 }

</script>

#4 Interactivity
HTML pages don’t have to be passive documents; they can also have content that is executable.
Executable content gives your pages behavior. You create executable content by writing
programs or scripts using a scripting language called JavaScript. Here’s a little taste of what it
means to put executable content into your pages.

Here’s a new HTML element, <script>, which
allows you to place code right inside of HTML.

And here’s a bit of JavaScript that
checks a user’s bid to make sure it’s
not zero dollars or less.

Then in HTML, you can create a form that uses this script to check the bid before the
form is submitted. If the bid is more than zero, the form gets submitted.

In JavaScript, we can define what happens when the submitButton is clicked, and get the value of the input with the id of “bid".

<form id="theForm" method="post" action="contest.php">

 <input type="number" id="bid" value="0">

 <input type="button" id="submitButton" value="Bid!">

</form>

If the bid is greater than 0, we
submit the form; otherwise, we don't because it's an error.

We're using the id of the form
to get a handle to the form in
JavaScript so we can do things with
it, like define what happens when a
button is clicked.

What else can scripting do?
Form input validation, like we did above, is a common and useful task that is often done with
JavaScript (and the types of validation you can do go far beyond this example). But that’s just
the beginning of what you can do with JavaScript…as you’ll see on the next page.

704 Chapter 15

other html5 goodies

#5 HTML5 APIs and web apps

With HTML5 APIs and JavaScript, you can

create a 2D drawable surface right in your

page; no plug-ins required.

No need for special
plug-ins to play video.

Make your pages location-

aware to know where

your users are, show them

what’s nearby, take them

on a scavenger hunt, give

them directions, to bring

people with common

interests together in the

same area.

Integrate your pages with

Google Maps and even

let your users track their

movement in real time.

Access any web service and
bring that data back to your
app, in near real time.

Cache data locally using
browser storage to speed up mobile apps.

Use web workers to turbo-charge your JavaScript
code and do some serious computation or make your
app more responsive. You can even make better use of
your user’s multicore processor!

Interact with your pages in new ways that
work for the desktop and mobile devices.

Create your own video
playback controls
using HTML and
JavaScript.

In addition to the elements that HTML5 adds, HTML5
comes with a whole new set of application programming
interfaces (APIs for short) that are accessible through JavaScript.
These APIs open up a whole new universe of expression and
functionality to your web pages. Let’s look at just a few things you
might do with them…

you are here 4 705

leftovers

Motivated yet?
You’ll find all these
examples in our book
Head First HTML5
Programming.

The browser’s clearly not just for

boring documents anymore. With

JavaScript, you can draw pixels

directly into the browser.

Build complete video
experiences that incorporate
video in new ways.

Use the power of JavaScript to
do full-blown video processing
in your browser. Create special
effects and even directly
manipulate video pixels.

Make use of browser-
based local storage.

Store lots of preferences and data
for your users locally, in the browser,
and even make it available for offline
access.

Super-charge your

forms with JavaScript

to provide real

interactivity.

706 Chapter 15

dealing with web fonts

#6 More on Web Fonts
We would have liked to have spent a lot more time on Web Fonts, so they ended up
making our “10 things we didn’t cover,” even though we did cover them. If you’re
using Web Fonts, there are a few more things you should know and investigate, so
we’ve put together a top 10 of things you should know about Web Fonts:

1. There are services that help take the pain out of using Web Fonts, like Google
Web Fonts (http://www.google.com/webfonts), Fonts.com (http://www.
fonts.com/web-fonts), and Extensis (http://www.extensis.com/).

2. Browsers behave differently while they download your fonts. Some browsers
display a backup font, while others wait for the font to be downloaded before
rendering the text.

3. Once you’ve downloaded a font, it is cached by your browser and not retrieved
again the next time you encounter a page that uses it.

4. All modern browsers (IE9+) support the Web Open Font Format (WOFF),
which is likely to become the Web Font standard. However, Internet Explorer
up through version 8 supports a font standard different from all other modern
browsers (.eot), and has a bug that prevents the browser from loading multiple
fonts (so you can’t just list more than one font in your @font-face rule). If you
need to support Web Fonts on IE8 and earlier, the services mentioned above
can insulate you from having to worry about these cross-browser compatibility
issues.

5. There are many free fonts out there. Look for “open source fonts” to find fonts
you can include in your web page for free.

6. Because Web Fonts are real fonts, you can apply any styling to them just like
you can to conventional fonts.

7. Using Web Fonts can have some impact on the performance of your
page, but is considered a better practice and will typically provide better
performance than using custom graphic images for typography.

8. Limit the fonts in your @font-face rule to only the fonts used on a
particular page.

9. If you have existing font licenses, check with your vendor; they may
allow web usage.

10. As with conventional fonts, always include a fallback font in case your
page’s font isn’t available or an error is encountered retrieving or
decoding it.

you are here 4 707

leftovers

#7 Tools for creating web pages
Now that you know HTML and CSS, you’re in a good position to decide if tools like
Dreamweaver, Expression Web, or Coda are for you. Some of these applications give you much
richer editors with features like code coloring and built-in preview to make creating and editing
your HTML and CSS easier. Some of these applications provide what-you-see-is-what-you-
get (WYSIWYG) tools for creating web pages; we’re sure you know enough about HTML and
browser support to know that this goal, while worthwhile, also comes up short from time to
time. But that said, these tools also provide some very handy features, even if you’re writing a
lot of the HTML yourself:

 � A “code” window for entering HTML and CSS with syntax checking to catch
common mistakes and suggest common names and attributes as you type.

 � A preview-and-publish functionality that allows you to test pages before making
them “live” on the Web.

 � A site manager that allows you to organize your site, and also keeps your local
changes in synch with your website on the server. Note that this usually takes care of
all the FTP work for you.

 � Some provide built-in validation, so you know your page is valid as you develop it.

These tools are also not without their downsides:

 � Sometimes these tools lag behind standards in terms of support,
so to keep your HTML and CSS current, you may need to write
(or edit) the HTML yourself.

 � Not all of these tools enforce strict standards, and may allow
you to get sloppy with your HTML and CSS, so don’t forget to
validate if the tool doesn’t provide built-in validation.

Keep in mind that you can use a combination of simple editors along with these
more sophisticated tools; one solution doesn’t have to fit all your needs. So use a
page creation tool when it makes sense.

 � Dreamweaver (Adobe)
 � Hype (Tumult)
 � Coda (Panic)
 � Microsoft Expression Web
 � Flux (The Escapers)
 � Amaya (Open source, developed by the W3C)
 � Eclipse (by the Eclipse Foundation)

Some tools to consider

The latest and greatest in web editors is always in flux, so be sure to check the Web for all the options for tools.

708 Chapter 15

what can you do with xhtml?

#8 XHTML5
We were pretty tough on XHTML in this book, with the whole

“XHTML is over” thing. The truth is, when it comes to XHTML, it is
only XHTML 2 and later that has died, and in fact, you can write your
HTML5 using XHTML style if you want to. Why would you want
to? Well, you might need to validate or transform your documents as
XML, or you might want to support XML technologies, like SVG (you’ll
probably know if you do), that work with HTML.

Let’s look at a simple XHTML document and then step through the high
points (we couldn’t possibly cover everything you need to know on this
topic; as with all things XML, it gets complicated fast).

<!doctype html>

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>You Rock!</title>

 <meta charset="UTF-8" />

 </head>

 <body>

 <p>I'm kinda liking this XHTML!</p>

 <svg xmlns="http://www.w3.org/2000/svg">

 <rect stroke="black" fill="blue" x="45px" y="45px"
 width="200px" height="100px" stroke-width="2" />

 </svg>

 </body>

</html>

Same doctype!
This is XML; we need to add what is
known as a namespace.

All elements have to be extremely well formed; note the
trailing /> here to close this void element. That’s XML’s
format for closing a void tag.

We can embed XML right in the
page! Kinda cool.

Now here’s a few things you need to consider for your XHTML pages:

 � Your page must be well-formed XML.

 � Your page should be served with the application/xhtml+xml
MIME type; for this, you’ll need to make sure your server is serving
this type (either read up on this or contact your server administrator).

 � Make sure to include the XHTML namespace in your <html>
element (which we’ve done above).

Closing all your elements, quotes
around attribute values, valid nesting
of elements, and all that

Like we said, with XML there’s a lot more to know and lots of things to
watch out for. And, as always with XML, may the force be with you…

As an example, we’re using
SVG to draw a rectangle
into our page. The details
aren’t important; what is
important is that this is
an XML format that lives
inside XML, not HTML.

you are here 4 709

leftovers

#9 Server-side scripting
Many web pages are generated by applications running on a server. For example, think about
an online order system where a server is generating pages as you step through the order process,
or an online forum, where there’s a server generating pages based on forum messages that are
stored in a database somewhere. We used a server application to process the form you created
in Chapter 14 for the Starbuzz Bean Machine.

Many hosting companies will let you create your own server applications by writing server-side
scripts and programs. Here’s a few things server-side scripting will allow you to do:

 � Build an online store complete with products, a shopping cart, and an order system.

 � Personalize your pages for each user based on his or her preferences.

 � Deliver up-to-date news, events, and information.

 � Allow users to search your site.

 � Allow users to help build the content of your site.

To create server applications, you’ll need to know a server-side scripting or programming
language. There are a lot of competing languages for web development, and you’re likely to get
differing opinions on which language is best depending on who you ask. In fact, web languages
are a little like automobiles: you can drive anything from a Prius to a Hummer, and each has its
own strengths and weaknesses (cost, ease of use, size, economy, and so on).

Web languages are constantly evolving; PHP, Python, Perl, Node.js, Ruby on Rails, and
JavaServer Pages (JSPs) are all commonly used. If you’re new to programming, PHP may be
the easiest language to start with, and there are millions of PHP-driven web pages, so you’d
be in good company. If you have some programming experience, you may want to try JSPs
or Python. If you’re more aligned with the Microsoft technologies, then you’ll want to look at
VB.NET and ASP.NET as a server-side solution. And, if JavaScript is your gig, then check out
Node.js for a whole new approach.

710 Chapter 15

making sound

#10 Audio
HTML gives you a standard way to play audio in your pages, without
a plug-in, with the <audio> element. You’ll find this element quite
similar to the <video> element:

Also like video, each browser implements its own look and feel for
player controls (which typically consist of a progress bar with play,
pause, and volume controls).

Sadly, like video, there is no standard encoding for audio. Three
formats are popular: MP3, WAV, and Ogg Vorbis. You’ll find that
support for these formats varies across the browser landscape (as
of this writing, Chrome is the only browser that supports all three
formats).

Despite its simple functionality, the <audio> element and its
JavaScript API give you lots of control. Using the element with
JavaScript, you can create interesting web experiences by hiding the
controls and managing the audio playback in your code. And with
HTML5, you can now do this without the overhead of having to use
(and learn) a plug-in (like Adobe Flash).

<audio src="song.mp3" id="boombox" controls>
 Sorry but audio is not supported in your browser.
</audio>

Look familiar? Yes, audio supports similar functionality as video (minus the video, obviously).

this is the index 711

Index

Symbols
& abbreviation, 112–113

& (ampersand) for entities, 113

/* and */ for comments in CSS, 285

<!-- and --> for comments in HTML, 6

<>(angle brackets), 25

<code> element, 114

: (colon) in CSS rules, 259

.. (dotdot) syntax for paths, 64–65

" " (double quotes)
for parent folders, 65
<q> element and, 86–87

@font-face rule, 322–325

/ (forward slash)
in closing tags, 26
for paths, 64–65

(hash symbol) for id selectors, 395

@media rules (CSS), 401, 405

; (semicolon) in CSS rules, 259

[] (square brackets) in form element names, 675

A
<a> elements

changing styles of, 452–453
creating links from elements in HTML5, 153
creating links with, 48–49
in lounge.html, 47
states of, 466

absolute layouts, 522

absolute paths, 136–137, 145, 159

absolute positioning, 504–510, 528–529, 536–537

action attribute, 650–651, 661, 692

active link state, 453

alt attribute, 173, 211, 242

angle brackets (< >), 25

anti-aliasing text, 210

Applications folder, 12

application/xhtml+xml MIME type, 708

<article> element, 562–564, 572–573, 595

<aside> element, 551, 595

attributes
attribute selectors, 698
of elements, 29, 51–53
matching to elements, 52
in opening tags, 36

<audio> element, 710

“auto” margins, 502

autoplay attribute (<video>), 583, 584

B
backgrounds

background-color property, 618, 634
background-image property, 380–383, 405
background-position property, 383, 405
background-repeat property, 383, 405
colors (web pages), 206, 210

block elements
flowing, 473–478, 537
planning pages with, 115

<blockquote> elements, 90–95, 92

<body> tags, 8, 23–24

bold text, 335–336

borders
adding to <div> element structure, 424–433
border-bottom property, 265–266, 354
border-collapse property, 616, 634
border-color property, 387, 389
border-radius property, 388, 405, 411

h
g

712 Index

the index

borders, continued
border-spacing (cells), 634
border-spacing property, 516, 616, 639
border-style property, 386
border-width property, 387
bottom, 265
box model and, 369–370, 377–379, 387
displaying in browsers, 31
shorthand for, 442–445
specifying corners of, 388

bottom property, 504

box model (CSS), 367–372

 elements, 96–99, 115

broken images in browsers, 215

browsers, web. See web browsers

C
<caption> element, 634

captions (HTML tables), 609–610

cd (change directory) command, 130

cells, table, 634

character encoding, 238–240

character entities, 112–113, 115

charset attribute (<meta> tags), 239, 249

checkbox controls, 692

checkbox <input> element, 653, 663, 673–674

checked attribute (forms), 695

Chrome, 16

class attributes, 301

classes
adding elements to, 286–291
class attributes, 392–397
placing <div> elements into, 421

clear property, 495–497, 537

closing tags, 25

codecs, 589, 590–592

collapsing borders, 616

colors
adding to HTML tables, 618–620
background (web pages), 206, 210
“color” type attribute, 692
color <input> element (forms), 656
Color Pickers, 206, 348–349
color property (CSS), 262, 313
of headings, changing, 439
naming, 343
web colors. See web colors

colspan attribute, 624, 634

comments
CSS, 285
HTML, 6

container file format, 589

content area (box model), 368, 371, 372, 405

Content Delivery Network (CDN), 591

controls attribute (video), 584

CSS (Cascading Style Sheets)
box model, 367–372
cascade, 458–463
comments in, 285
comparing languages with HTML, 294–295
CSS Pocket Reference, 260, 445
CSS table displays

creating, 510–520
laying out forms with, 682–685
layouts, 522

errors in, 297
vs. HTML, 34–35
inheriting styles from parent elements, 281–285
linking pages to external stylesheets, 273–277
properties overview, 300
rules, 36, 259–260, 301
selectors, 698–699
<style> element, 29–32, 261–263
style definitions, 42
styling forms with, 686–687
styling upgrade project, 362–365
transforms and transitions, 701–702

you are here 4 713

the index

updating for HTML5 elements, 554
validating, 298–299
vender-specific properties, 700

cursive fonts, 315

D
data transfers (hosting), 125

“date” type attribute, 692

date <input> element (forms), 657, 671–672

datetime attribute, 565–566

default.htm files, 138–139, 159

definition lists, 106

 element (HTML), 353

descendant selectors, 437–439, 466

dir command, 131

directions.html, 54

directories (folders), 130

display: table property, 516

<div> element (HTML)
adding styles to, 424–433
defined, 466
dividing pages into sections with, 417–422
line-height property and, 440
new HTML5 elements and, 595

doctype definitions, 225–227, 229–230, 249

domain names, 126–128, 159

Dreamweaver, 6

E
editors, text, 16

elements
adding to classes, 286–291
basics, 25–26, 36
defined, 25
floating, 479–482, 487–490, 497, 525–529
form, 652–657
height of, 430
linking to with IDs, 151

multiple rules for, 267
nesting, 107–109
new in HTML5, 547–550
selecting by siblings, 699
structure, 36
styling based on state, 453–454

elixir.html, 54

 element, 92, 114, 338

<email> element (forms), 663

email <input> element (forms), 657

Embedded OpenType fonts, 325

em units for sizing fonts, 329, 334

encoding
character, 238–240
formats (video), 586–587

entities, character, 112–114

executable content in web pages, 703

external stylesheets, 273–277, 301

F
fantasy fonts, 315

<fieldset> element, 689, 692

files
creating in Mac, 12–13
creating in Windows, 14–15
extensions, 15
file <input> element (forms), 690
“file:///” protocol, 145
file protocol, 159
organizing in folders, 56–59
transferring to server root folder, 129–133

Firefox, 16

:first-child pseudo-class, 454

:first-letter pseudo-element, 698

:first-line pseudo-element, 698

fixed position elements, 537

fixed positioning, 506, 531–534, 536

Flash video, 592

floated elements, 537

714 Index

the index

floating
elements, 525–529
float property, 472, 478–482, 487–490
inline elements, 497
layouts, 521, 525–526

flowing block/inline elements, 473–478

flow of elements, 537

:focus pseudo-class, 453

folders
organizing files/images in, 56–59
for thumbnails, 192

fonts (CSS)
changing weight of, 335–336
colors, background vs. font, 349
families of, 355
@font-face rule, 322–325
font-family property, 279–280
for Mac/Windows, 321
properties, 312–313
shorthand for, 444
sizing, 328–334
styling, 337–339
Web Fonts, 325–327, 706

footers
<footer> element (HTML5), 551, 595
laying out, 493–496, 499

formats
image, 167
video, 586–591

forms, HTML
action attribute, 650, 661, 665, 692
adding checkboxes/text area to, 673–674
adding fieldsets/legends to, 689
adding <input> elements to, 664–666, 671–675
adding <label> elements for accessibility, 688
adding password <input> element to, 689
basics, 646–649
commonly used elements, 652–657
file <input> element, 690
<form> element, 649–651, 660–663, 692
GET vs. POST methods, 678–680

laying out with CSS table display, 682–685
multiple choice menus, 690
name attribute, 662
placeholder attribute, 691
required attribute, 691
server scripts, 646–647, 650–652, 660, 663
styling with CSS, 686–687

frozen layouts, 501–502, 537

FTP (File Transfer Protocol), 129–132, 159

G
get <filename> command, 131

GET method, 678–680, 692

GIF image format, 167–168, 172, 211

Google Web Fonts, 325–327, 706

Guide, HTML, 245–246

H
<h1> element (headings), 22

<h2> element (subheadings), 8, 22

<head> element, 8, 23–24, 36

<header> elements, 551, 568–571, 572–573, 595

header images, 523–524

Head First HTML5 Programming, 6, 52, 231, 593, 705

Head First learning principles, xxviii

Head First Lounge project, 4–5

Head First Mobile Web, 403

headings
changing color of, 439
levels of, 6

height properties
attribute, 174, 584
CSS box model and, 366, 371
of elements, 430
property, 570

hex code (colors), 32, 345–347, 349, 355

“Hide extensions for known file types” option, 15

hosting companies, 125, 159

you are here 4 715

the index

hover state, 453–454

href attribute
basics (interview), 53
relative paths in, 59
specifying link destination with, 48–51

HTML5
APIs and web apps, 704–705
browser support for, 553
building blog with new elements, 562–569
vs. HTML4.01, 555–556
new elements in, 546–550, 594, 595
specification

doctype, 227
overview, 231, 242

HTML (Hypertext Markup Language)
basics, 4
comments, 6
creating tables with. See tables, HTML
creating web page, 9–11, 17–22
vs. CSS, 34–35
forms. See forms, HTML
guidelines for well-formed pages, 245–246
Guide to, 245–246
.html extension, 14
<html> tag, 6, 23
HTML & XHTML: The Definitive Guide (O’Reilly),

52
incorporating CSS into, 259–260
language vs. CSS, 294–295
legacy elements, 247
living standard, 228
marking up page structure, 38–41
overview, 2–3
readability of, 6
saving, 18
structure for table displays, 512–514
structuring text with tags, 21–23
version history of, 222–225

HTTP (HyperText Transfer Protocol), 135, 159

hypertext links. See links

I
id attribute, 150–153, 392–397, 405, 418

“Ignore rich text commands in HTML files” option, 13

images
adding logo to myPod application, 202–209
broken images in browsers, 215
browser handling of, 164–166
fixing broken, 66–68
formats, 167, 211
 element, 55, 170–172, 381
 elements, 211
as links, 211
organizing in folders, 57–58
quality of, 187
sizing/resizing, 174, 178, 183–184
using as list markers, 632–633

!important, 459, 461

index.html file, 11, 18, 138–139, 159, 176

inherited properties, 301, 464

inheriting styles, 281–285

inline elements
basics, 94–95
flowing, 473–478, 537
<q> and , 115
setting properties on, 450

<input> elements (forms), 652–653, 656–657, 664–667,
670–674

<ins> element, 353

Internet Explorer, 16

italic style text, 337–339

J
JavaScript, 703

jello layouts, 502–503, 521, 537

JPEG images, 167–168, 172, 211

716 Index

the index

K
keywords for sizing fonts, 330, 334

L
labels

<label> elements, 688, 692
labeling <div> with id attribute, 418
link, 148

:last-child pseudo-class, 454

layouts, CSS, 521–523

leading (text), 366

left property, 504

legacy HTML elements, 247

<legend> element, 689

 elements, 101–106

lighter font-weight property, 335

linebreaks, 95

line-height property, 365–366, 405, 440

<link> element, 275–277, 301

links
adding titles to, 147–149
Head First Lounge example, 44–50
:link pseudo-class, 455
linking into parent folders, 63–65
linking into subfolders, 60–62
linking to new windows, 155–157
linking to points in pages, 149–152
linking within pages, 153
link labels, 148
link states, 453
to other websites, 142–145
relative, 154
turning thumbnails into, 196–200

liquid layouts, 501–502, 537

lists
list-style-image property, 632
list-style-position property, 633
list-style-type property, 631

loop attribute (video), 584

lossy/lossless formats (images), 167–168

lounge.html, 54, 66

M
Mac OS X

creating HTML files in, 12–13
FTP applications for, 132
specifying fonts for, 321

margins
box model and, 369, 371–372, 377–379
margin-right property, 385
settings for, 405
shorthand for, 442–445

markers, list, 631–632

matching tags, 25

matte color, setting, 206–207

Matte option
in Photoshop Elements, 210
in “Save for Web” dialog box, 205

max-device-width property, 400, 404, 412

max-width property, 404, 412

@media rules (CSS), 401

media attribute, 400

media queries, 401–402

<meta> tags, 239–240, 249

metacognition, xxix–xxxi

method attribute (forms), 650, 692

MIME type, 590

min-device-width property, 400, 404, 412

min-width property, 404, 412

mismatching tags, 109–110

mission.html page, 33

mkdir (make directory) command, 131

monospace fonts, 315

MP4 containers, 586–587

multiple attribute (forms), 690

multiple classes, 291

you are here 4 717

the index

multiple custom fonts, 327

multiple links to stylesheets, 463

multiple stylesheets, 399–400

myPod application (images), 175–177, 188–191

N
name attribute (form element), 662–663

naming
classes/ids, 397
colors, 343

<nav> element (HTML5), 575–577, 595

navigating multiple pages, 573–577

negative property values, 533–534

nesting
<div> elements, 420, 466
elements, 107–109
lists, 115
nested tags, 26
tables, 634

normal keyword, 445

Notepad, 14

:nth-child pseudo-class, 619, 634

“number” type attribute, 692

number <input> element (forms), 656, 671–672

O
oblique style text, 337–339

Ogg container, 586–587

 element, 103–106

online color charts, 349

“Open and Save” tab, 13

opening tags, 25

OpenType fonts, 325

Opera, 16

<option> element (forms), 655, 663, 666, 692

ordered lists, 102–105, 115, 633

orientation property, 400

overriding style inheritance, 284–285

P
<p> elements, 55, 101

<p> tags, 8, 22

padding
basics, 405
box model and, 368, 371–372, 377–379
padding-left property, 384
shorthand for, 442–445

paragraphs
linking, 55
styling independently (box model), 375–383

parent folders, linking into, 63–65

password <input> element, 689

paths (links)
absolute, 136–137, 145
planning, 60–65
relative, 137, 145

percentages
positioning elements with, 506
sizing fonts with, 328–329, 334

photo images, size of, 211

Photoshop Elements
finding web colors with, 348–349
Matte color menu in, 211
resizing images with, 181

pixels
pixel resolutions, 179–180
sizing fonts with, 328

placeholder attribute (forms), 691, 692

“Plain text”, 13

PNG images, 167–168, 172, 203–205, 211

ports, 145

position property, 504–507, 537

poster attribute (video), 584

POST method, 678–680, 692

<pre> element, 114

Preferences, TextEdit, 13

preload attribute (<video>), 584

718 Index

the index

properties
CSS, 300
of fonts, 312–313
inherited, 301, 464
list-style (CSS), 634
shortcuts for, 466

pseudo-classes, 454–456, 466, 619

pseudo-elements, 698

put <filename> command, 130

pwd command (FTP), 131

Q
<q> elements, 86–88, 92, 117

R
radio buttons, 692

radio <input> element, 653, 663, 668

ragged borders, 389

“range” type, 692

range <input> element, 656

relative font sizing, 328–329

relative links, 154

relative paths
absolute paths and, 137
basics, 69–71
grand challenge solutions, 75–76
vs. URLs, 145, 159

relative positioning, 506, 536, 537

reload button (browsers), 24

required attribute, 692

required attribute (forms), 691

RGB color values
specifying in CSS, 344
web colors and, 340–342

right property, 504

root folders (server), 129–133

rows (HTML tables)
adding color to, 618–620
cells spanning multiple, 622–624
columns and, 607

rules, CSS
cascade and, 459
combining, 264
ordering of, 293, 459
overriding inherited styles with, 284–285
syntax, 259–260
writing for multiple elements, 264–266

S
Safari, 16

sans-serif fonts, 314, 320

saving
HTML, 18
images, 187
“Save for Web” option, 183–184, 187, 204–205

screen readers, 157

<script> element, 703

scripting, server-side, 709

<section> element, 562–564, 572–573, 595

<select> element, 692

selecting
elements by siblings, 699
elements with ids/classes, 395
<select> element, 655, 663, 665–667

selectors (CSS)
basics, 267
class, 288
combining, 698–699
descendant, 437–439

serif fonts, 314, 320

server-side scripting, 651, 709

SFTP (Secure File Transfer Protocol), 132

shortcuts, property, 466

shorthand, CSS, 442–445

you are here 4 719

the index

sidebars, laying out, 488–490, 499

sizing/resizing
fonts, 312, 328–334
images, 174, 178–184, 183–185

<source> element, 589–591

 element (HTML), 448–450, 466

special characters, 112–113

specificity, calculating, 460–461

src attribute (CSS), 68–69, 170, 211, 582, 584

Starbuzz Coffee project
adding CSS to, 30–33
basic structure with HTML tags, 21
creating web page, 11–12
loading content into browser, 17
markup, 38
structure, 10

states of links, 453

static positioning, 506, 536, 537

 element, 114

styles
guide to applying, 292–293
inheriting from parent elements, 281–285
<style> element, 29–32
<style> element, placing, 36
<style> tags, 261–263, 301
stylesheets, multiple, 399–400, 405

styling fonts, 337–339

subfolders, linking into, 60–62

subheadings, HTML, 22

submit buttons, 692

submit <input> element (forms), 652, 663

SVG fonts, 325

T
<table> element (HTML), 634

tables, HTML
adding captions to, 609–610
adding color to, 618–620

adding styles to, 612–616
cells spanning multiple rows, 622–624
collapsing borders, 616
creating, 603–607
CSS table displays, 537, 607
pasting into web pages, 611
styling lists in, 631–633

tags, HTML
basics, 25–42
in Head First Lounge project, 5–6
matching, 25
mismatching, 109–110
nested, 26
Starbuzz Coffee project, 21
starting and ending, 26
structuring text with, 21–23, 39–41

target attribute, 156–157, 159

<td> element, 604–606, 624, 634, 641

tel <input> element (forms), 657, 663

text
anti-aliasing, 210
editors, 16
flowing onto web pages, 478
fonts. See fonts (CSS)
text-align property, 431–433, 466, 634
<textarea> element (forms), 654, 663, 673, 692
text-decoration property (CSS), 267, 313, 353, 355
TextEdit (Mac), 12–13
text <input> element, 652, 692
wrapping around list markers, 633

<th> element (HTML), 604–606, 634

thumbnails, 192–196, 211

<time> element, 114, 565–566, 595

<title> element, 8, 23–24

title attribute (<a> element), 147–149

tooltips, 153

top property, 504

<tr> element, 604–606

transforms and transitions (CSS), 701–702

transparency in images, 204–205, 210

720 Index

the index

TrueType fonts, 325

type attribute, 51, 652

U
 element, 103–106, 118–119

underlining text, 267

Unicode, 112–113, 239

unordered lists, 102–105, 633

URLs (Uniform Resource Locators)
basics, 134
defined, 159
for images, 171–172
<url> element (forms), 663
url <input> element (forms), 657

UTF-8 encoding, 18, 239, 249

V
validating

CSS validator, 298–299
W3C Validator, 233–240

value attribute (forms), 663, 692

vendor-specific CSS properties, 700

vertical-align property, 516, 520, 634

<video> element (HTML5)
attributes, 584
basics, 580–583
formats, 586–591

:visited pseudo-class, 455

void elements, 98–99, 115, 172

W
W3C Validator, 233–238, 249, 298–299

web applications, HTML5 for, 242

web browsers
basics, 3
broken images in, 215
built-in default styles, 28
choosing, 16

displaying HTML in, 3–4
displaying HTML tables, 605
displaying HTML video, 585
handling of forms by, 647
handling of images by, 164–166
HTML version support, 228
interpreting HTML, 5–6
loading content into, 17–19
opening pages in, 19
resizing images to fit in, 180–186
selecting, 16
supporting HTML5, 553
whitespace and, 36

web colors
basics, 340–342
creating, 355
finding, 348–349
specifying, 343–347

Web Fonts, 325–327, 706

web forms. See forms, HTML

WebM container, 586–587

web pages
adding executable content to, 703
applications for creating, 707
dividing into sections with <div> element, 417–422
how the web works, 2–6
linking to external CSS stylesheets, 273–277
opening in browsers, 19
setting background color, 206
structure of, 115

web pages, constructing
adding <blockquote> elements, 90–94
adding
 element, 96–99
adding <q> element, 86–88
outline, 81
overview, 79
rough design sketch, 80
testing page, 84

web servers
basics, 3
editing files on, 132

you are here 4 721

the index

moving files to root folder on, 128–131
port 80 and, 145
requests from browsers, 138
root folder, importance of, 129
submitting forms to, 646–647

websites for further information
character encoding, 239
CSS3 Media Queries specification, 403
domain names, 126–127
FTP applications, 132
hosting companies, 125
symbol/foreign character abbreviations, 112–113
W3C validator, 233
Web Fonts, 327

weight property (CSS fonts), 335–336

WHATWG and W3C, 591

whitespace, use of, 36

width attribute
images, 174
video, 584

width property
basics, 426–430
borders and, 387
CSS box model and, 369, 371
height of columns and, 520
setting for elements, 466

windows, linking to new, 155–157

Windows, Microsoft
creating HTML files in, 14–15
FTP applications for, 132
specifying fonts for, 321

World Wide Web Consortium (W3C), 249

X
XHTML, 99

XHTML5, 708

XML, 223, 225, 708

Z
z-index property, 505–506, 537

you are here 4 723

getting to know HTML and CSS

All interior layouts were designed by Eric Freeman and Elisabeth Robson.

The book’s look and feel was based and extended from the original design by Kathy Sierra and Bert Bates

The book was produced using Adobe InDesign CS5 and Adobe Photoshop CS. The book was typeset using

Uncle Stinky, Mister Frisky (you think we’re kidding), Ann Satellite, Baskerville, Comic Sans (can you believe

it?), Myriad Pro, Skippy Sharp, Savoye LET, Jokerman LET, Courier New, and Woodrow typefaces.

Interior design and production all happened on two Mac Pros and two MacBook Airs.

Writing locations included: Bainbridge Island, Washington; Portland, Oregon; Seaside, Florida; Lexington,

Kentucky. Long days of writing were powered by zero caffeine and Brew Dr. Kombucha, and the sounds of

Foster the People, B-52s, Duran Duran, David Bowie, William Shatner, Elvis Presley, Pink Floyd, Genesis,

Simple Minds, Ratt, Skid Row, Men without Hats, Men at Work, Berlin, Steve Roach, Tom Waits, Beyman

Brothers, and a heck of a lot more 80s music than you’d care to know about.

Colophon

Don’t you know
about the website? We’ve
got answers to some of the
questions in this book, guides to
how to do more, and daily updates
on the blog from the authors!

This isn’t goodbye
Bring your brain over to

wickedlysmart.com

	Authors of Head First HTML and CSS
	Table of Contents
	Intro
	Who is this book for?
	We know what you’re thinking.
	We think of a “Head First” reader as a learner.
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission
	Read me
	Tech reviewers (first edition)
	Acknowledgments (first edition)
	Tech reviewers (second edition)
	Acknowledgments (second edition)
	Safari® Books Online

	Chapter 1: The Language of the Web
	The Web killed the radio star
	What does the web server do?
	What you write (the HTML)
	What the browser creates
	Your big break at Starbuzz Coffee
	Creating the Starbuzz web page
	Creating an HTML file (Mac)
	Creating an HTML file (Windows)
	Meanwhile, back at Starbuzz Coffee…
	Saving your work
	Opening your web page in a browser
	Take your page for a test drive
	Are we there yet?
	Another test drive
	Tags dissected
	Meet the style element
	Giving Starbuzz some style…
	Cruisin’ with style…

	Chapter 2: Meeting the “HT” in HTML
	Head First Lounge, new and improved
	Creating the new lounge
	What did we do?
	Understanding attributes
	Getting organized
	Organizing the lounge…
	Technical difficulties
	Planning your paths…
	Fixing those broken images…

	Chapter 3: Web Page Construction
	From journal to website, at 12 mph
	The rough design sketch
	From a sketch to an outline
	From the outline to a web page
	Test driving Tony’s web page
	Adding some new elements
	Meet the <q> element
	Looooong quotes
	Adding a <blockquote>
	The real truth behind the <q> and <blockquote> mystery
	Meanwhile, back at Tony’s site…
	Of course, you could use the <p>element to make a list…
	Constructing HTML lists in two easy steps
	Taking a test drive through the cities
	Putting one element inside another is called “nesting”
	To understand the nesting relationships, draw a picture
	Using nesting to make sure your tags match

	Chapter 4: A Trip to Webville
	Getting Starbuzz (or yourself) onto the Web
	Finding a hosting company
	HELLO, my name is…
	How can you get a domain name?
	Moving in
	Getting your files to the root folder
	As much FTP as you can possibly fit in two pages
	Back to business…
	Mainstreet, USA
	What is HTTP?
	What’s an absolute path?
	How default pages work
	Earl needs a little help with his URLs
	How do we link to other websites?
	Linking to Caffeine Buzz
	And now for the test drive…
	Web page fit and finish
	The title test drive…
	Linking into a page
	Using the id attribute to create a destination for ￼a￼
	How to link to elements with ids
	Linking to a new window
	Opening a new window using target

	Chapter 5: Meeting the Media
	How the browser works with images
	How images work
	￼img￼: it’s not just relative links anymore
	Always provide an alternative
	Sizing up your images
	Creating the ultimate fan site: myPod
	Check out myPod’s “index.html” file
	Whoa! The image is way too large
	Resize the image to fit in the browser
	Open the image
	Resizing the image
	Resizing the image, continued…
	You’ve resized—now save
	Save the image
	Fixing up the myPod HTML
	And now for the test drive…
	More photos for myPod
	Taking myPod for another test drive
	Reworking the site to use thumbnails
	Create the thumbnails
	Rework the HTML to use the thumbnails
	Take myPod for another test drive
	Turning the thumbnails into links
	Create individual pages for the photos
	So, how do I make links out of images?
	Add the image links to “index.html”
	Open the myPod logo
	What format should we use?
	To be transparent, or not to be transparent? That is the question…
	Save the transparent PNG
	Wait, what is the color of the web page background?
	Set the matte color
	Set the matte color, continued
	Check out the logo with a matte
	Save the logo
	Add the logo to the myPod web page
	And now for the final test drive

	Chapter 6: Getting Serious with HTML
	A Brief History of HTML
	The new, and improved, HTML5 doctype
	HTML, the new “living standard”
	Adding the document type definition
	The doctype test drive
	Meet the W3C validator
	Validating the Head First Lounge
	Houston, we have a problem…
	Fixing that error
	We’re almost there…
	Adding a ￼meta￼ tag to specify the character encoding
	Making the validator (and more than a few browsers) happy with a ￼meta￼ tag…
	Third time’s the charm?
	Calling all HTML professionals, grab the handbook…

	Chapter 7: Adding a Little Style
	You’re not in Kansas anymore
	Overheard on Webville’s “Trading Spaces”
	Using CSS with HTML
	Getting CSS into your HTML
	Adding style to the lounge
	Cruising with style: the test drive
	Style the heading
	Let’s put a line under the welcome message too
	We have the technology: specifying a second rule, just for the ￼h1￼
	So, how do selectors really work?
	Seeing selectors visually
	Getting the lounge style into the elixirs and directions pages
	Creating the “lounge.css” file
	Linking from “lounge.html” to the external stylesheet
	Linking from “elixir.html” and “directions.html” to the external stylesheet
	Test driving the entire lounge…
	It’s time to talk about your inheritance…
	What if we move the font up the family tree?
	Test drive your new CSS
	Overriding inheritance
	Test drive
	Adding an element to the greentea class
	Creating a class selector
	A greentea test drive
	Taking classes further…
	The world’s smallest and fastest guide to how styles are applied
	Who gets the inheritance?
	Making sure the lounge CSS validates
	Who gets the inheritance?

	Chapter 8: Expanding Your Vocabulary
	Text and fonts from 30,000 feet
	What is a font family anyway?
	Specifying font families using CSS
	Dusting off Tony’s journal
	Getting Tony a new font-family
	Test driving Tony’s new fonts
	How do I deal with everyone having different fonts?
	How Web Fonts work
	How to add a Web Font to your page…
	Test drive the Web Font in Tony’s journal
	Adjusting font sizes
	So, how should I specify my font sizes?
	Let’s make these changes to the font sizes in Tony’s web page
	Test driving the font sizes
	Changing a font’s weight
	Test drive the normal-weight headings
	Adding style to your fonts
	Styling Tony’s quotes with a little italic
	How do web colors work?
	How do I specify web colors? Let me count the ways…
	The two-minute guide to hex codes
	Putting it all together
	How to find web colors
	Back to Tony’s page…we’re going to make the headings orange, and add an underline too
	Test drive Tony’s orange headings
	Everything you ever wanted to know about text decorations in less than one page
	Removing the underline…

	Chapter 9: Getting Intimate with Elements
	The lounge gets an upgrade
	Setting up the new lounge
	Starting with a few simple upgrades
	Checking out the new line height
	Getting ready for some major renovations
	A closer look at the box model
	What you can do to boxes
	Meanwhile, back at the lounge…
	Creating the guarantee style
	A test drive of the paragraph border
	Padding, border, and margins for the guarantee
	Adding some padding
	Now let’s add some margin
	Adding a background image
	Fixing the background image
	How do you add padding only on the left?
	How do you increase the margin just on the right?
	A two-minute guide to borders
	Border fit and finish
	Using an id in the lounge
	Using multiple stylesheets
	Stylesheets—they’re not just for desktop browsers anymore…
	Add media queries right into your CSS

	Chapter 10: Advanced Web Construction
	A close look at the elixirs HTML
	Let’s explore how we can divide a page into logical sections
	Adding a border
	Adding some real style to the elixirs section
	The game plan
	Working on the elixir width
	Adding the basic styles to the elixirs
	What we need is a way to select descendants
	Changing the color of the elixir headings
	Fixing the line height
	It’s time to take a little shortcut
	Adding ￼span￼s in three easy steps
	The ￼a￼ element and its multiple personalities
	How can you style elements based on their state?
	Putting those pseudo-classes to work
	Isn’t it about time we talk about the “cascade”?
	The cascade
	Welcome to the “What’s my specificity?” game
	Putting it all together

	Chapter 11: Arranging Elements
	Did you do the Super Brain Power?
	Use the Flow, Luke
	What about inline elements?
	How it all works together
	How to float an element
	Behind the scenes at the lounge
	The new Starbuzz
	Move the sidebar just below the header
	Set the width of the sidebar and float it
	Fixing the two-column problem
	Setting the margin on the main section
	Uh oh, we have another problem
	Solving the overlap problem
	Righty tighty, lefty loosey
	Liquid and frozen designs
	How absolute positioning works
	Changing the Starbuzz CSS
	How CSS table display works
	How to create the CSS and HTML for a table display
	Adding HTML structure for the table display
	How to use CSS to create table displays
	Meanwhile, back at Starbuzz…
	A quick test drive…
	What’s the problem with the spacing?
	Fix the spacing
	A final test drive of our table display
	Problems with the header
	Fixing the header images with float
	Test drive your float
	Adding the award
	Positioning the award
	How does fixed positioning work?
	Using a negative left property value

	Chapter 12: Modern HTML
	Rethinking HTML structure
	Modern Starbuzz
	Update your Starbuzz HTML
	How to update your CSS for the new elements
	Building the Starbuzz blog page
	Setting up the CSS for the blog page
	Test drive the blog page
	We still need to add a date to the blog…
	Adding the ￼time￼ element to your blog
	How to add more ￼header￼ elements
	So, what’s wrong with the header anyway?
	A final test drive for the headers
	Completing the navigation
	Adding the navigation CSS
	Who needs GPS? Giving the navigation a test drive
	Adding a ￼nav￼ element…
	Making our CSS more specific…
	Ta-da! Look at that navigation!
	Creating the new blog entry
	And now, introducing the ￼video￼ element
	Lights, camera, action…
	How does the ￼video￼ element work?
	Closely inspecting the video attributes…
	What you need to know about video formats
	The video format contenders
	How to juggle all those formats…
	Take 2: lights, camera, action…
	How to be even more specific with your video formats
	Update and test drive

	Chapter 13: Getting Tabular
	How do you make tables with HTML?
	Creating a table with HTML
	What the browser creates
	Tables dissected
	Adding a caption
	Before we start styling, let’s get the table into Tony’s page
	Getting those borders to collapse
	How about some color?
	Tony made an interesting discovery
	Another look at Tony’s table
	How to tell cells to span more than one row
	Test drive the table
	Trouble in paradise?
	Overriding the CSS for the nested table headings
	Giving Tony’s site the final polish
	What if you want a custom marker?

	Chapter 14: Getting Interactive
	How forms work
	How forms work in the browser
	What you write in HTML
	What the browser creates
	How the <form> element works
	Getting ready to build the Bean Machine form
	Adding the ￼form￼ element
	How form element names work
	Back to getting those ￼input￼ elements into your HTML
	Adding some more input elements to your form
	Adding the ￼select￼ element
	Test driving the ￼select￼ element
	Give the customer a choice of whole or ground beans
	Punching the radio buttons
	Using more input types
	Adding the number and date input types
	Test driving the number and date input elements
	Completing the form
	Adding the checkboxes and text area
	Watching GET in action
	Getting the form elements into HTML structure for table display layout
	Styling the form with CSS
	A word about accessibility
	What more could possibly go into a form?
	More things that can go in a form

	Appendix: The Top Ten Topics (We Didn’t Cover)
	#1 More CSS selectors
	#2 Vendor-specific CSS properties
	#3 CSS transforms and transitions
	#4 Interactivity
	#5 HTML5 APIs and web apps
	#6 More on Web Fonts
	#7 Tools for creating web pages
	#8 XHTML5
	#9 Server-side scripting
	#10 Audio

	Index
	Colophon

